BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT (Autonomous Institute affiliated to VTU, Belagavi)

(Accredited by NAAC with 'A' grade and NBA) Yelahanka, Bengaluru-560 064

Blow up Syllabus (With effect from 2021-22)

Bachelor of Engineering I & II Semesters

NOVEMBER 2021

Vision

To emerge as one of the finest technical institutions of higher learning, to develop engineering professionals who are technically competent, ethical and environment friendly for betterment of the society.

Mission

Accomplish stimulating learning environment through high quality academic instruction, innovation and industry-institute interface.

PROGRAM OUTCOMES

Program Outcomes as defined by NBA Engineering Graduates will be able to:

- 1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- 6. **The Engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10.**Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Semester: I/II

Course Code: 21CS13/23

Course Name: C Programming for Engineers (CPE) (Common to ALL branches)

Blow-up Syllabus Department of Computer Science and Engineering

Sl. No.	Topics	Method of Delivery	Aids Required	No. of Hours
	MODULE - 1	-		
1	Discussion on the Vision and Mission of the department, Course Objectives Outcomes and Introduction to the Course.	PPP	Projector	1
2	Algorithms, Flowcharts.	PPP	Projector	1
3	Significance and scope of C Programming, Basic Structure of a C Program, Character Set, C Tokens, Keywords and Identifiers.	PPP	Projector	1
4	Constant, variable, data types, Declaration of Variables.	PPP	Projector	1
5	Operators and expressions.	PPP	Projector	1
6	Lab: Introductions to UNIX commands.	Live Demo	Projector	1
7	Lab: Introduction to Program Development and debugging skills.	Live Demo	Projector	1
8	Lab: Program demonstration on Operators and expressions.	Live Demo	Projector	1
9	Lab: Program demonstration to illustrate the usage of Constant, variable, data types, Declaration of Variables.	Live Demo	Projector	1
10	Lab: Program execution to demonstration the usage of the usage of Constant, variable, data types, Declaration of Variables.	Live Demo	Projector	1
11	Lab: Hands on session to execution and demonstration the usage of Operators.	Lab Session	system	1
12	Lab: Hands on session to execution and demonstration the usage of Operators.	Lab Session	system	1
13	Lab: Hands on session to execution and demonstration the usage of Operators.	Lab Session	system	1
14	Lab: Hands on session to execution and demonstration the usage of Operators.	Lab Session	system	1
	1	I	1 P a g	g

15	Lab: Hands on session to execution and demonstration the usage of Operators and expressions.	Lab Session	system	1
	Module - 2			
16	Input-Output Operations: Introduction, Reading a character, Writing a Character.	PPP	Projector	1
17	Formatted Input, Formatted output.	PPP	Projector	1
18	Decision Making, Branching and Looping: Introduction, Decision making with if statement, Simple if statement, ifelse Statement, Nesting of ifelse statements, The else if ladder.	PPP	Projector	1
19	The switch Statement, The? : Operator, The goto statement, The while statement.	PPP	Projector	1
21	The do while statement, The for statement, Jumps in loops.	PPP	Projector	1
22	Lab: Program to demonstrate I/O operations.	Live Demo	Projector	1
23	Lab: Program to demonstrate Formatted Input, Formatted output functions.	Live Demo	Projector	1
24	Lab: Program to demonstrate Decision Making statements.	Live Demo	Projector	1
25	Lab: Program to demonstrate Branching and Looping statements.	Live Demo	Projector	1
26	Lab: Hands on session to execution and demonstration I/O operations.	Lab Session	system	1
27	Lab: Hands on session to execution and demonstration decision making statements.	Lab Session	system	1
28	Lab: Hands on session to execution and demonstration decision making statements.	Lab Session	system	1
29	Lab: Hands on session to execution and demonstration branching and looping statements.	Lab Session	system	1
30	Lab: Hands on session to execution and demonstration branching and looping statements.	Lab Session	system	1
	Module - 3			
31	Arrays: Introduction, One dimensional Arrays, Declaration of One dimensional Arrays, Initialization of One dimensional Arrays.	PPP	Projector	1
32	Two dimensional Arrays, Initializing Two dimensional Arrays.	PPP	Projector	1
33	Multi-dimensional Arrays.	PPP	Projector	1

34	Structures and Unions: Introduction, Defining a Structure, Declaring Structure Variables, Accessing Structure Members, Structure Initialization,	PPP	Projector	1
35	Copying and Comparing Structure Variables, Operations on individual members, Arrays of Structures, Arrays within Structures, Structures within Structures, Unions	PPP	Projector	1
36	Demonstration of Linear Search and Binary search Programs.	PPP	Projector	1
37	Demonstration of Bubble sort and Selection sort Programs.	PPP	Projector	1
38	Lab: Solving problems through demonstrating the usage of one dimension array.	Live Demo	Projector	1
39	Lab: Hands on session to execution and demonstration the usage of one dimension array.	Live Demo	Projector	1
40	Lab: Hands on session to execution and demonstration the usage of one dimension array.	Live Demo	Projector	1
41	Lab: Solving problems through demonstrating the usage of two dimension array.	Live Demo	Projector	1
42	Lab: Hands on session to execution and demonstration the usage of two dimension array.	Lab Session	system	1
43	Lab: Hands on session to execution and demonstration the usage of two dimension array.	Lab Session	system	1
44	Lab: Solving problems through demonstrating the usage of Structures.	Lab Session	system	1
45	Lab: Hands on session to execution and demonstration the usage of Structures.	Lab Session	system	1
46	Lab: Hands on session to execution and demonstration the usage of Structures and Unions.	Lab Session	system	1
	Module - 4			
47	User Defined Functions: Introduction, Need for user defined functions, A multi-function program, Elements of user defined functions, Definition of Functions, Return values and their types, Function calls, Function declaration.	PPP	Projector	1
48	Category of Functions, No arguments and no return values, Arguments but no return values, Arguments with return values, No arguments but returns a value, Functions that returns multiple values, Nesting of functions.	PPP	Projector	1
49	Passing arrays to functions, Passing strings to functions.	PPP	Projector	1
50	Pass by value and Pass by reference.	PPP	Projector	1

52	Lab: Program to demonstrate the use of user defined functions and program modularity.	Live Demo	Projector	1
53	Lab: Program to demonstrate the use of various categories of user defined functions.	Live	Projector	1
54	Lab: Program to demonstrate the concept of Pass by value and Pass by reference.	Live Demo	Projector	1
55	Lab: Program to demonstrate the concept of return values and types.	Live Demo	Projector	1
56	Lab: Program to demonstrate the concept of Nesting of functions.	Live Demo	Projector	1
57	Lab: Program to demonstrate the concept of storage classes.	Live Demo	Projector	1
58	Lab: Hands on session to execution and demonstration the usage of user defined functions and understanding the importance of program modularity.	Lab Session	system	1
59	Lab: Hands on session to execution and demonstration the usage of various categories of user defined functions.	Lab Session	system	1
60	Lab: Hands on session to execution and demonstration the usage of Pass by value and Pass by reference.	Lab Session	system	1
61	Lab: Hands on session to execution and demonstration the usage of Nesting functions.	Lab Session	system	1
62	Lab: Hands on session to execution and demonstration array usage in user defined functions.	Lab Session	system	1
63	Lab: Hands on session to execution and demonstration the usage of storage classes.	Lab Session	system	1
	Module - 5			
64	Strings: Introduction, Declaring and Initializing String Variables, Reading Strings from Terminal, Writing Strings to Screen.	PPP	Projector	1
65	Arithmetic operations on characters, Putting strings together, Comparison of two strings.	PPP	Projector	1
66	String Handling Functions, Table of strings.	PPP	Projector	1
67	Pointers: Introduction, Understanding Pointers, Accessing the address of a Variable, Declaring Pointer Variables, Initialization of Pointer Variables,	PPP	Projector	1
68	Accessing a Variable through its Pointer. Chain of Pointers, Pointer Increments and Scale Factor,	PPP	Projector	1
69	Pointer and Arrays, Pointers and Character Strings,	Live Demo	Projector	1

	Total Hours			78
70	pointers in the program.	Session	system	1
78	pointers in the program.Lab: Hands on session to execution and demonstrate the usage	Session Lab	ovetom	1
77	Lab: Hands on session to execution and demonstrate the usage	Lab	system	1
70	pointers in the program.	Session	system	1
76	of strings in the program. Lab: Hands on session to execution and demonstrate the usage	Lab	evetam	1
75	Lab: Hands on session to execution and demonstrate the usage	Lab Session	system	1
		Demo		
74	Lab: Program to demonstrate the usage of pointers in C program.	Live	Projector	1
		Dellio		
15	Luo. 1 logiani to demonstrate the usage of string functions.	Demo	TOJECIOI	1
73	Lab: Program to demonstrate the usage of string functions.	Live	Projector	1
		Demo		
72	Lab: Program to demonstrate the operations on strings.	Live	Projector	1
		Demo		
71	Lab: Program to demonstrate the usage of strings.	Live	Projector	1
	Pointers to Functions.			•
70	Pointers as Function Arguments, Functions returning Pointers,	PPP	Projector	1

Course Delivery:

Power point presentation (PPP), Live Demonstrations (Live Demo), Lab Sessions, Interactions, Tutorials, hands on program demonstration.

Textbooks

- 1. E Balaguruswamy, Programming in ANSI C, Tata McGraw Hill, 8th edition, 2019.
- 2. Brian W. Kernighan and Dennis Ritchie, The C Programming Language, Pearson Education Limited, 2nd Edition, 1998.

References

- 1. Behrouz A. Forouzan and Richard F. Gilberg, Computer Science: A Structured Approach Using C, Cengage Learning, 3rd edition, 2013.
- 2. Yashavant P. Kanetkar, Let Us C, BPB Publications, 15th edition, 2017.
- 3. Herbert Schildt, C: The Complete Reference, McGraw Hill Education; 4th edition, 2017.

BLOW-UP SYLLABUS

Department of Chemistry Engineering

Semester:	I/II
Course Code:	21CH12/22
Course Name:	ENGINEERING CHEMISTRY
Course Faculty:	DR. BINCY ROSE VERGIS

Course code and title: Engineering Chemistry/ 21CH12/22	Course Credits: (3:0:0) 03
CIE: 50 Marks	SEE: 50 Marks
No. of Theory hours: 40 (8L per module)	Lab support: As Necessary
Prepared by: Dr. Bincy Rose Vergis	Date: 01/01/2022
Reviewed by: HOD (Chemistry Department)	Date: 10/01/2022

Detailed Syllabus

Modul e #	TOPICS	No. of Hours
1	Preamble: Relevance of chemistry in day today activities, Importance of materials in industrial, defense and research application and its economic implications. Influence of new materials for the technological development, study and use of environment friendly materials for healthier society.	1
2	Electrochemistry and Storage devices: Introduction to electrochemical cell, Reactions and Sign Conventions. Single electrode potential & EMF, Derivation of Nernst equation for single electrode potential.	1
3	Numerical problems on E_{cell} . Concentration Cell: working and Potential generated in a concentration cell, and numericals.	1
4	Types of electrodes, Reference Electrodes with examples. Ion-selective electrode, Glass electrode: construction and working of glass electrode. Determination of pH using glass electrode.	1
5	Electrochemical sensors: Definition, principle and broad classification of electrochemical sensors and its applications.	1
6	Batteries- Classification of batteries – Primary, secondary and reserve batteries with examples. Construction, working and applications of metal - air (Zn- air) battery.	1
7	Construction, working and applications of Lithium ion Battery (LIB).	

		1
8	Fuel Cells: Introduction, difference between conventional cell and fuel cell, limitations & advantages. Construction & working of H_2 - O_2 fuel	1
	Cell.	
9	Corrosion Science:	1
	Introduction to corrosion. Consequences of corrosion, Types of	
	Corrosion: Chemical and electrochemical corrosion. Electrochemical	
	Theory of corrosion.	
10	Differential metal corrosion, differential aeration corrosion with examples	1
	of waterline and pitting corrosion.	
11	Factors affecting corrosion: Nature of metal, and nature of corrosion	1
	product.	
12	Factors affecting corrosion: Ratio of anodic area to cathodic area, and	1
	nature of environment (pH, temperature, conductivity).	
13	Corrosion control: Cathodic protection- Sacrificial anode method and	1
	Impressed current method	
14	Anodic and Cathodic protective coatings-metal coating: - Galvanization	1
	and Tinning.	
	Electroplating: Principle. Electroplating of Chromium- Hard and	1
15	Decorative Cr plating.	
16	Electroless plating of copper with example of PCB.	1
17	Chemical Fuels and Alternative Fuels:	1
17	Introduction, Characteristics of a good fuel, Calorific value- gross and net	1
	calorific values.	
18	Determination of calorific value of a fuel using Bomb calorimeter and	1
10	numerical problems.	1
19	Petrol knocking: Mechanism of petrol knocking, reactions involved and	1
17	adverse effects of knocking.	1
20	Anti-knocking agents: Leaded and Unleaded petrol.	1
20	Alternate Fuels: Power alcohol: advantages and disadvantages.	1
22	Biodiesel: Synthesis, advantages and disadvantages.	1
23	Solar energy – Introduction, Types of solar energy conversion. Properties	1
- 24	of Silicon – Production of Solar grade Silicon from Quartz.	1
24	Construction and working of Photovoltaic cells.	1
25	Smart Materials for Engineers:	1
	Smart materials: Introduction, definition, and various types of smart	
	materials.	
26	Self-healing materials, Introduction, Mechanism, advantages,	1
	applications.	
27	Shape memory alloys, Introduction, mechanism, types of shape memory	1
	alloys, advantages, applications.	
28	Nanomaterials: Introduction and classification of Nanomaterials	1
29	Properties: Electrical, thermal, optical, catalytic properties	1
30	Synthesis of Nanomaterials- Top down and bottom up approach, Sol gel	1
	Synthesis of Nanomaterials- Top down and bottom up approach, Sol gel method	1
		1
30	method	

33	Water Technology:	1
55	Determination of Hardness of water and Alkalinity of water	
34	Determination of sulphate and chloride by gravimetric method.	1
35	Estimation of sodium and potassium by Flame photometry	1
36	Chemical & Biological oxygen demand (COD and BOD), Definition,	1
30	significance and determination of COD & BOD	
37	Water softening by Ion – exchange resin.	1
38	Sewage water treatment by primary secondary treatment by activated	1
30	sludge process and tertiary process	
39	Causes, effects and impressive solutions for oxides of Carbon, sulphur	1
39	and nitrogen.	
40	Causes, effects and impressive solutions for Hydrocarbons, mercury and	1
40	lead.	

BLOW-UP SYLLABUS

Department of Physics Engineering

AY/Semester: 2021-22/ I/II

Course Code: 21PY12

Course Name: ENGINEERING PHYSICS

Sess	Topics	No. of	Delivery	Assessm
ion No.		Hours	Method	ent Method
110.	Module: 1 Quantum mechanics and Electr	ical cond	uctivity in Metals	Witchiou
Self-s	tudy topics: Dual nature of light and wave particle d			on theory,
	ssion for electrical conductivity, Failure of classical physics			
1	1.1Quantum mechanics:Introduction, Heisenberg's	1	Class room	CIE
	uncertainty principle and its application: non-existence		teaching / PPT	
	of an electron inside the nucleus (relativistic case).		presentation	
2	1.2 Wave functions and its physical significance.	1	Class room	CIE
	Probability density, normalization, Eigen values and		teaching / PPT	
	Eigen functions.		presentation	
3	1.3 Time independent 1-D Schrodinger wave equation	1	Class room	CIE
	(derivation) and its application: particle in infinite		teaching / PPT	
	potential well: Energy Eigen values and Eigen function		presentation.	
4	1.4 Finite potential well, Quantum tunneling and its	1	Class room	CIE
	applications (qualitative) and Numericals on		teaching / PPT	
	Heisenberg's uncertainty principle, Probability density		presentation/Ass	
	and Energy Eigen values and Eigen function.		ignment.	
5	1.5Electrical conductivity in metals: Introduction,	1	Class room	CIE
	Assumptions of quantum free electron theory, density of		teaching / PPT	
	states (qualitative), Qualitative discussion of Fermi		presentation	
	level, Fermi energy,	1	<u>C1</u>	CIE
6	1.6 Fermi-Dirac statistics, Fermi factor, Fermi factor at	1	Class room	CIE
	different temperatures, Electrical conductivity (qualitative),		teaching / PPT presentation	
7	1.7 Merits of QFET: Specific heat capacity, dependency		Class room	CIE
,	of resistivity on temperature and electrical conductivity		teaching / PPT	
	with electron concentration.		presentation	
8	Numerical on electrical conductivity, Fermi factor,	1	Class room	CIE
	Fermi energy.		teaching/Assign	
			ment	
	Hands on training topics: Fermi energy of different m	naterials		

	Module: 2 Electrical conductivity in Semiconductors, Laser					
Self-study topics: Fundamentals of semiconductors, concept of electrons and holes, Concepts of						
	emission, Ruby laser.			1		
9	2.1 Electrical conductivity in Semiconductors:	1	Class room	CIE		
	Introduction, expression for electron and hole		teaching / PPT			
	concentration (Qualitative), relation between E_g and E_f ,		presentation			
10	2.2 Electrical conductivity in intrinsic semiconductors	1	Class room	CIE		
	(derivation), Photovoltaic and LED principle		teaching / PPT			
			presentation			
11	2.3 Hall Effect, expression for Hall voltage in terms of	1	Class room	CIE		
	hall coefficient and its applications.		teaching / PPT			
			presentation			
12	Numerical on electrical conductivity, Hall effect.	1	Class room	CIE		
			teaching/Assign			
			ment			
13	2.4 Laser: Interaction of radiation with matter: Induced	1	Class room	CIE		
	Absorption, spontaneous emission, stimulated emission.		teaching / PPT			
	Einstein coefficients.					
14	2.5 Expression for energy density – derivation of energy	1	Class room	CIE		
	density in terms of Einstein's co efficient		teaching / PPT			
	(Derivations)		presentation			
	Conditions for laser emission: Meta stable state,					
	Population inversion (qualitative)					
15	2.6 Prerequisites of Laser action:	1	Class room	CIE		
	active medium, resonant cavity and pumping		teaching / PPT			
	mechanism (qualitative)		presentation			
	CO_2 Laser:					
	Principle, Construction and working with energy level					
16	diagram.	1	01	OIE		
16	2.7 Semiconductor Diode Laser:	1	Class room	CIE		
	Principle, Construction and working with energy level		teaching / PPT			
	diagram. Application of lasers in industries (welding,		presentation			
	cutting and drilling) and data storage (qualitative), Numerical on energy, power of lasers, Einstein's					
	coefficients.					
	Hands on training topics: Hall effect measurement and	nd Lasar k	an characteristics			
	Module: 3 Maxwell's equation			•		
Self	-study topics: Fundamentals of vectors, dot and cross p			ace and		
	me integrals, Total internal reflection, advantages of optical					
	vbacks of optical fibres, application of optical fibers in point					
17	3.1 Maxwell's equations: Gradient, Divergence, Curl	1	Class room	CIE		
	and their physical significance. Gauss's divergence and		teaching / PPT			
	Stoke's theorem (no derivation)		presentation			
18	3.2 Derivations of Maxwell's equations:	1	Class room	CIE		
	Using Guass' law in Electrostatics $(\nabla \cdot \vec{D} = \rho_v)$	_	teaching / PPT	_		
	Using Guass' law in Electrostatics $(\nabla \cdot \vec{B} = \rho_v)$ Using Guass' law in magnetic field $(\nabla \cdot \vec{B} = 0)$		presentation			
	Using Quass law in magnetic neur $(V \cdot D = 0)$		-			

	Faraday's law in Integral form $(\oint \vec{E} \cdot d\vec{L} = -\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S})$			
	Faraday's law in point or differential form $(\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t})$			
10		1	01	CIE
19	3.3 Ampere's circuital law, concept of Displacement current and modified Ampere's-circuital law, Physical significances of Maxwell's Equations. List the Maxwell's equations in static, time varying field	1	Class room teaching / PPT presentation	CIE
20	and in free space.	1	<u></u>	CIE
20	3.4 Electromagnetic waves in free space, Properties and velocity of E.M. waves, wave equation in terms of electric field, Transverse nature and polarization numericals on Maxwell's equations, Cur, Divergence.	1	Class room teaching / PPT presentation/Nu merical	CIE
21	 3.5 Optical fibers: Introduction, Description of propagation mechanism of light through an optical fiber. Conditions for ray propagation: Acceptance angle, Numerical aperture (derivation), Numericals on acceptance angle, NA. 	1	Class room teaching / PPT presentation/Ass ignment	CIE
22	3.6 Types of optical fibers: 3 types with diagram of Modes of propagation and V-number.	1	Class room teaching / PPT presentation	CIE
23	3.7 Signal degradation in optical fiber and its measurement: Definition of attenuation, name the three types of attenuation, causes of attenuation: Explain absorption, scattering and radiation losses. Mention the expression for attenuation coefficient.	1	Class room teaching / PPT presentation/Ass ignment	CIE
24	Numericals on fiber loss and modes of propagation.	1		CIE
	ds on training topics: Divergence and curl visualization, t	-	natura of light	CIL
		Tallsverse	nature of light.	
Con	dition for ray propagation: TIR and fiber losses.	tog and T		
G . 10	Module: 4 Oscillations, Dielectr			1
linear	study topics: Definition of SHM, characteristics, examples r and circular motion, differential equation of SHM. Basics bund waves.			
25	4.1 Oscillations: Free oscillations of simple loaded spring mass system, kinetic and potential energies of loaded spring mass system (qualitative),	1	Class room teaching / PPT presentation	CIE
26	4.2 Series and parallel combinations of springs, theory of damped oscillations.	1	Class room teaching / PPT/Assignment	CIE
27	4.3 Theory of Forced oscillations, Resonance.	1	Class room teaching / PPT/Assignment	CIE

• •				O'TT
28	4.4 Applications of resonance, Numericals on spring	1	Class room	CIE
	constant, laws of combinations, Resonance and forced		teaching /	
	oscillations.		PPT/Assignment	
29	4.5Dielectrics: Introduction, Various polarization	1	Class room	CIE
	mechanisms involved in dielectric - Electronic		teaching /	
	polarization, Ionic polarization, Orientation polarization,		PPT/Assignment	
	Space charge polarization.			
30	4.6 Applications of dielectric materials: Dielectrics in	1	Class room	CIE
	transformers and in microwave heating, Non-linear		teaching /	
	dielectrics (Piezoelectric effect and pyroelectrics).		PPT/Assignment	
31	4.7Ultrasonic waves: Introduction, Production of	1	Class room	CIE
	ultrasonic by piezoelectric method, properties and		teaching / PPT	
	applications of ultrasonic waves: Non-destructive		presentation	
	testing of materials.			
31	Numericals on polarization constants, Dielectric	1		
	constant, velocity of Ultrasonics.			
Hand	s on training topics: Spring strength calculations and design	gning of g	good springs, resona	ance.
Ν	Iodule: 5Crystal structure and Defects, Elastic pro	perties o	f solids and shock	waves
Self	-study topics: Basic terminologies and types of crystal	structure	s, fundamentals of	elasticity,
	ke's law, stress-strain curve and elastic moduli.			
		1	Class room	CIE
Ноо	ke's law, stress-strain curve and elastic moduli.	1	Class room teaching / PPT	CIE
Ноо	ke's law, stress-strain curve and elastic moduli.5. 1Crystal structure: Introduction, Crystal systems	1		CIE
Ноо	 ke's law, stress-strain curve and elastic moduli. 5. 1Crystal structure: Introduction, Crystal systems based on lattice parameters, Miller indices explanation 	1	teaching / PPT	CIE
Ноо	 ke's law, stress-strain curve and elastic moduli. 5. 1Crystal structure: Introduction, Crystal systems based on lattice parameters, Miller indices explanation with an example, Expression for interplanar spacing - 	1	teaching / PPT	CIE
<u>Hoo</u> 32	 ke's law, stress-strain curve and elastic moduli. 5. 1Crystal structure: Introduction, Crystal systems based on lattice parameters, Miller indices explanation with an example, Expression for interplanar spacing - derivation 		teaching / PPT presentation	
<u>Hoo</u> 32	 ke's law, stress-strain curve and elastic moduli. 5. 1Crystal structure: Introduction, Crystal systems based on lattice parameters, Miller indices explanation with an example, Expression for interplanar spacing - derivation 5.2 Bragg's law, X-ray Diffractometer: to find the 		teaching / PPT presentation Class room	
Hoo 32 33	 ke's law, stress-strain curve and elastic moduli. 5. 1Crystal structure: Introduction, Crystal systems based on lattice parameters, Miller indices explanation with an example, Expression for interplanar spacing - derivation 5.2 Bragg's law, X-ray Diffractometer: to find the interplanar distance and crystal structure determination. 		teaching / PPT presentation Class room teaching / PPT	
<u>Hoo</u> 32	 ke's law, stress-strain curve and elastic moduli. 5. 1Crystal structure: Introduction, Crystal systems based on lattice parameters, Miller indices explanation with an example, Expression for interplanar spacing - derivation 5.2 Bragg's law, X-ray Diffractometer: to find the interplanar distance and crystal structure determination. 5.3 Crystal defects- types and its applications. 	1	teaching / PPT presentation Class room teaching / PPT presentation Class room	CIE
Hoo 32 33	 ke's law, stress-strain curve and elastic moduli. 5. 1Crystal structure: Introduction, Crystal systems based on lattice parameters, Miller indices explanation with an example, Expression for interplanar spacing - derivation 5.2 Bragg's law, X-ray Diffractometer: to find the interplanar distance and crystal structure determination. 5.3 Crystal defects- types and its applications. Numericals. On Miller indices, interplanar spacing, 	1	teaching / PPT presentation Class room teaching / PPT presentation Class room teaching / PPT	CIE
Hoo 32 33 34	 ke's law, stress-strain curve and elastic moduli. 5. 1Crystal structure: Introduction, Crystal systems based on lattice parameters, Miller indices explanation with an example, Expression for interplanar spacing - derivation 5.2 Bragg's law, X-ray Diffractometer: to find the interplanar distance and crystal structure determination. 5.3 Crystal defects- types and its applications. Numericals. On Miller indices, interplanar spacing, Bragg's law. 	1	teaching / PPT presentation Class room teaching / PPT presentation Class room teaching / PPT presentation	CIE
Hoo 32 33	 ke's law, stress-strain curve and elastic moduli. 5. 1Crystal structure: Introduction, Crystal systems based on lattice parameters, Miller indices explanation with an example, Expression for interplanar spacing - derivation 5.2 Bragg's law, X-ray Diffractometer: to find the interplanar distance and crystal structure determination. 5.3 Crystal defects- types and its applications. Numericals. On Miller indices, interplanar spacing, Bragg's law. 5.4 Elastic properties of solids: Introduction, 	1	teaching / PPT presentation Class room teaching / PPT presentation Class room teaching / PPT presentation Class room	CIE
Hoo 32 33 34	 ke's law, stress-strain curve and elastic moduli. 5. 1Crystal structure: Introduction, Crystal systems based on lattice parameters, Miller indices explanation with an example, Expression for interplanar spacing - derivation 5.2 Bragg's law, X-ray Diffractometer: to find the interplanar distance and crystal structure determination. 5.3 Crystal defects- types and its applications. Numericals. On Miller indices, interplanar spacing, Bragg's law. 5.4Elastic properties of solids: Introduction, Importance of elastic materials, Poisson's ratio and its 	1	teaching / PPT presentation Class room teaching / PPT presentation Class room teaching / PPT presentation Class room teaching / PPT	CIE
Hoo 32 33 34 35	 ke's law, stress-strain curve and elastic moduli. 5. 1Crystal structure: Introduction, Crystal systems based on lattice parameters, Miller indices explanation with an example, Expression for interplanar spacing - derivation 5.2 Bragg's law, X-ray Diffractometer: to find the interplanar distance and crystal structure determination. 5.3 Crystal defects- types and its applications. Numericals. On Miller indices, interplanar spacing, Bragg's law. 5.4Elastic properties of solids: Introduction, Importance of elastic materials, Poisson's ratio and its limitations. 	1 1 1 1	teaching / PPT presentation Class room teaching / PPT presentation Class room teaching / PPT presentation Class room teaching / PPT presentation	CIE CIE CIE
Hoo 32 33 34	 ke's law, stress-strain curve and elastic moduli. 5. 1Crystal structure: Introduction, Crystal systems based on lattice parameters, Miller indices explanation with an example, Expression for interplanar spacing - derivation 5.2 Bragg's law, X-ray Diffractometer: to find the interplanar distance and crystal structure determination. 5.3 Crystal defects- types and its applications. Numericals. On Miller indices, interplanar spacing, Bragg's law. 5.4 Elastic properties of solids: Introduction, Importance of elastic materials, Poisson's ratio and its limitations. 5.5 Factors affecting elasticity, strain hardening and 	1	teaching / PPT presentation Class room teaching / PPT presentation Class room teaching / PPT presentation Class room teaching / PPT presentation Class room	CIE
Hoo 32 33 34 35	 ke's law, stress-strain curve and elastic moduli. 5. 1Crystal structure: Introduction, Crystal systems based on lattice parameters, Miller indices explanation with an example, Expression for interplanar spacing - derivation 5.2 Bragg's law, X-ray Diffractometer: to find the interplanar distance and crystal structure determination. 5.3 Crystal defects- types and its applications. Numericals. On Miller indices, interplanar spacing, Bragg's law. 5.4 Elastic properties of solids: Introduction, Importance of elastic materials, Poisson's ratio and its limitations. 5.5 Factors affecting elasticity, strain hardening and softening, 	1 1 1 1	teaching / PPT presentation Class room teaching / PPT presentation Class room teaching / PPT presentation Class room teaching / PPT presentation	CIE CIE CIE
Hoo 32 33 34 35	 ke's law, stress-strain curve and elastic moduli. 5. 1Crystal structure: Introduction, Crystal systems based on lattice parameters, Miller indices explanation with an example, Expression for interplanar spacing - derivation 5.2 Bragg's law, X-ray Diffractometer: to find the interplanar distance and crystal structure determination. 5.3 Crystal defects- types and its applications. Numericals. On Miller indices, interplanar spacing, Bragg's law. 5.4Elastic properties of solids: Introduction, Importance of elastic materials, Poisson's ratio and its limitations. 5.5 Factors affecting elasticity, strain hardening and softening, Relation between elastic constants: i) Y, n & ii) K, Y 	1 1 1 1	teaching / PPT presentation Class room teaching / PPT presentation Class room teaching / PPT presentation Class room teaching / PPT presentation Class room	CIE CIE CIE
Hoo 32 33 34 35 36	 ke's law, stress-strain curve and elastic moduli. 5. 1Crystal structure: Introduction, Crystal systems based on lattice parameters, Miller indices explanation with an example, Expression for interplanar spacing - derivation 5.2 Bragg's law, X-ray Diffractometer: to find the interplanar distance and crystal structure determination. 5.3 Crystal defects- types and its applications. Numericals. On Miller indices, interplanar spacing, Bragg's law. 5.4 Elastic properties of solids: Introduction, Importance of elastic materials, Poisson's ratio and its limitations. 5.5 Factors affecting elasticity, strain hardening and softening, Relation between elastic constants: i) Y, n & σ ii) K, Y & σ and iii) σ, k, n & Y (qualitative). 	1 1 1 1	teaching / PPT presentation Class room teaching / PPT presentation Class room teaching / PPT presentation Class room teaching / PPT presentation Class room teaching / PPT presentation	CIE CIE CIE CIE
Hoo 32 33 34 35	 ke's law, stress-strain curve and elastic moduli. 5. 1 Crystal structure: Introduction, Crystal systems based on lattice parameters, Miller indices explanation with an example, Expression for interplanar spacing - derivation 5.2 Bragg's law, X-ray Diffractometer: to find the interplanar distance and crystal structure determination. 5.3 Crystal defects- types and its applications. Numericals. On Miller indices, interplanar spacing, Bragg's law. 5.4 Elastic properties of solids: Introduction, Importance of elastic materials, Poisson's ratio and its limitations. 5.5 Factors affecting elasticity, strain hardening and softening, Relation between elastic constants: i) Y, n & σ ii) K, Y & σ and iii) σ, k, n & Y (qualitative). 5.6 Bending moment of beams, Single cantilever- 	1 1 1 1	teaching / PPT presentation Class room teaching / PPT presentation Class room teaching / PPT presentation Class room teaching / PPT presentation Class room teaching Class room teaching	CIE CIE CIE
Hoo 32 33 34 35 36	 ke's law, stress-strain curve and elastic moduli. 5. 1 Crystal structure: Introduction, Crystal systems based on lattice parameters, Miller indices explanation with an example, Expression for interplanar spacing - derivation 5.2 Bragg's law, X-ray Diffractometer: to find the interplanar distance and crystal structure determination. 5.3 Crystal defects- types and its applications. Numericals. On Miller indices, interplanar spacing, Bragg's law. 5.4 Elastic properties of solids: Introduction, Importance of elastic materials, Poisson's ratio and its limitations. 5.5 Factors affecting elasticity, strain hardening and softening, Relation between elastic constants: i) Y, n & σ ii) K, Y & σ and iii) σ, k, n & Y (qualitative). 5.6 Bending moment of beams, Single cantilever-Expression for Young's modulus (derivation), 	1 1 1 1	teaching / PPT presentation Class room teaching / PPT presentation Class room teaching / PPT presentation Class room teaching / PPT presentation Class room teaching Class room teaching	CIE CIE CIE CIE
Hoo 32 33 34 35 36	 ke's law, stress-strain curve and elastic moduli. 5. 1 Crystal structure: Introduction, Crystal systems based on lattice parameters, Miller indices explanation with an example, Expression for interplanar spacing - derivation 5.2 Bragg's law, X-ray Diffractometer: to find the interplanar distance and crystal structure determination. 5.3 Crystal defects- types and its applications. Numericals. On Miller indices, interplanar spacing, Bragg's law. 5.4 Elastic properties of solids: Introduction, Importance of elastic materials, Poisson's ratio and its limitations. 5.5 Factors affecting elasticity, strain hardening and softening, Relation between elastic constants: i) Y, n & σ ii) K, Y & σ and iii) σ, k, n & Y (qualitative). 5.6 Bending moment of beams, Single cantilever- 	1 1 1 1	teaching / PPT presentation Class room teaching / PPT presentation Class room teaching / PPT presentation Class room teaching / PPT presentation Class room teaching Class room teaching	CIE CIE CIE CIE
Hoo 32 33 34 35 36	 ke's law, stress-strain curve and elastic moduli. 5. 1 Crystal structure: Introduction, Crystal systems based on lattice parameters, Miller indices explanation with an example, Expression for interplanar spacing - derivation 5.2 Bragg's law, X-ray Diffractometer: to find the interplanar distance and crystal structure determination. 5.3 Crystal defects- types and its applications. Numericals. On Miller indices, interplanar spacing, Bragg's law. 5.4 Elastic properties of solids: Introduction, Importance of elastic materials, Poisson's ratio and its limitations. 5.5 Factors affecting elasticity, strain hardening and softening, Relation between elastic constants: i) Y, n &σ ii) K, Y & σ and iii) σ, k, n & Y (qualitative). 5.6 Bending moment of beams, Single cantile ver-Expression for Young's modulus (derivation), Applications of beams 	1 1 1 1	teaching / PPT presentation Class room teaching / PPT presentation Class room teaching / PPT presentation Class room teaching / PPT presentation Class room teaching Class room teaching	CIE CIE CIE CIE
Hoo 32 33 34 35 36 37	 ke's law, stress-strain curve and elastic moduli. 5. 1 Crystal structure: Introduction, Crystal systems based on lattice parameters, Miller indices explanation with an example, Expression for interplanar spacing - derivation 5.2 Bragg's law, X-ray Diffractometer: to find the interplanar distance and crystal structure determination. 5.3 Crystal defects- types and its applications. Numericals. On Miller indices, interplanar spacing, Bragg's law. 5.4 Elastic properties of solids: Introduction, Importance of elastic materials, Poisson's ratio and its limitations. 5.5 Factors affecting elasticity, strain hardening and softening, Relation between elastic constants: i) Y, n & σ ii) K, Y & σ and iii) σ, k, n & Y (qualitative). 5.6 Bending moment of beams, Single cantilever-Expression for Young's modulus (derivation), 	1 1 1 1	teaching / PPT presentation Class room teaching / PPT presentation Class room teaching / PPT presentation Class room teaching / PPT presentation Class room teaching Class room teaching	CIE CIE CIE CIE

	waves,		presentation		
40	5.8 Reddy's shock tube and its characteristics,	1	Class room	CIE	
	applications of shock waves: industry and agricultural		teaching /		
	fields. Numericals on mach number.		PPT/Assignment		
Hand on training topics: Structure of NaCI and diamond, single cantilever, Reddy's shock tube.					

Suggested learning resources:

Textbooks:

- 1. M N Avadhanulu and P G Kshirsagar, "Engineering Physics," S. Chand and company Pvt. Ltd., 11th edition, 2014.
- 2. R K Gaur & S L Gupta, "Engineering Physics," Dhanpat Rai Publications, 8th edition, 2018.

References:

- 1. S O Pillai, "Solid State Physics," New Age International publishers, 8th edition, 2017.
- 2. David Jeffery Griffiths, "Introduction to Electrodynamics", Pearson New International Edition, 4th edition, 2017
- 3. B B Laud, "Lasers and Non-Linear Optics," New Age International publishers, 3rd edition, 2018.
- 4. Arthur Beiser, "Concepts of Modern Physics", Tata McGraw-Hill Education, 6th edition, 2010.
- 5. Resnick, Walker and Halliday "Principles of Physics, Wiley publisher, 10th edition, 2015.
- 6. Ben G. Streetman, Sanjay Banerjee, "Solid State Electronic Devices" Pearson Prentice Hall, 6th edition, 2010.
- 7. S. K. Dwivedi, A Textbook of Engineering Physics, I K International Publishing House Pvt. Ltd., 1st edition 2010.
- 8. Chintoo S Kumar, K Takayama and KPJ Reddy, Shock waves made simple-: Willey India Pvt. Ltd. New Delhi2014

Module wise Reference books /Text books:

Module	Article	Text Books/Reference books
	No.	
1	1.1	1. M N Avadhanulu and P G Kshirsagar, "Engineering Physics," S. Chand
	1.2	and company Pvt. Ltd., 11th edition, 2014.
	1.3	2. R K Gaur & S L Gupta, "Engineering Physics," Dhanpat Rai
	1.4	Publications, 8th edition, 2018.
	1.5	
	1.6	
	1.7	
2	2.1	1. B B Laud, "Lasers and Non-Linear Optics," New Age International
	2.2	publishers, 3rd edition, 2018.
	2.3	2. M N Avadhanulu and P G Kshirsagar, "Engineering Physics," S. Chand
	2.4	and company Pvt. Ltd., 11th edition, 2014.
	2.5	3. Ben G. Streetman, Sanjay Banerjee, "Solid State Electronic Devices"
	2.6	Pearson Prentice Hall, 6 th edition, 2010.
	2.7	
3	3.1	1. David Jeffery Griffiths, "Introduction to Electrodynamics", Pearson
	3.2	New International Edition, 4th edition, 2017
	3.3	2. B B Laud, "Lasers and Non-Linear Optics," New Age International
	3.4	publishers, 3rd edition, 2018.
	3.5	3. Arthur Beiser, "Concepts of Modern Physics", Tata McGraw-Hill
	3.6	Education, 6th edition, 2010.
	3.7	
4	4.1	1. R K Gaur & S L Gupta, "Engineering Physics," Dhanpat Rai
	4.2	Publications, 8 th edition, 2018.
	4.3	2. S. K. Dwivedi, A Textbook of Engineering Physics, I K International
	4.4	Publishing House Pvt. Ltd., 1 st edition 2010.
	4.5	-
	4.6	-
5	4.7 5.1	1. S O Pillai, "Solid State Physics," New Age International publishers, 8 th
5	5.1	edition, 2017.
		2. R K Gaur & S L Gupta, "Engineering Physics," Dhanpat Rai
	5.3	Publications, 8 th edition, 2018.
	5.4	3. Chintoo S Kumar, K Takayama and KPJ Reddy, Shock waves made
		simple-: Willey India Pvt. Ltd. New Delhi 2014
	5.5	
	5.6	
	5.7	
	5.8	

DEPARTMENT OF CIVIL ENGINEERING

Elements of Civil Engineering (3:0:0) 3

(Effective from the academic year 2021-22)

Blow-up Syllabus (Common to all Branches)

	Module-1		
Sl. No	Details	Duration in hours	Remarks
	Introduction to Civil Engineering: Scope of interdisciplinary branches in infrastructure development, Relevance of civil engineer for sustainable development of society. Scope of different fields of Civil Engineering, Surveying, Building Materials, Construction Technology, Geotechnical Engineering, Structural Engineering, Hydraulics, Water Resources and Irrigation Engineering, Transportation Engineering, Environmental Engineering.	2	Self- study component: (Scope of sub branches of civil engineering)
	Infrastructure, Types of infrastructure, Role of Civil Engineer in the Infrastructural Development, Effect of the infrastructural facilities on socio-economic development of a country.	1	Concepts
	Introduction to Engineering Mechanics: Basic idealizations – Particle, Continuum and Rigid body; Newton's laws, Force and its characteristics, Force Systems - Classification of force systems, Principle of physical independence, superposition, transmissibility of forces.	1	Numerical problems on composition and resolution of forces
	Introduction to SI units. Newton's Laws of Motion, Law of parallelogram of forces, Polygonal law, Triangle law of forces	2	Concepts and Numerical
5	Resolution and Composition of forces-numerical.	2	Concepts and Numerical
	Module-2		1
SI. No	Details	Duration in hours	Remarks
	Equilibrium of Coplanar Concurrent Force Systems: Principle of resolved parts, Resultant & Composition of coplanar-concurrent force system, Related numerical.	1	Concepts and Numerical
7	Lamis's Theorem, Free body Diagram and related numerical.	2	Concepts and Numerical
	Equilibrium of Coplanar Non-Concurrent Force Systems: Varignon's principle of moments, Resultant and Composition of coplanar non-concurrent force system, Force couple system.	2	Concepts and Numerical
	Supports & Support reactions in Beams: Types of supports, types of beams, & types of loading, Related numerical on determinate beams.	2	Concepts and Numerical
	Statically Determinate & indeterminate Beams, Related numerical on determinate beams.	1	Concepts and Numerical

	Module-3		
Sl. No	Details	Duration in hours	Remarks
	Centroid: Introduction - computing centroid for- T, L, I and full/quadrant circular sections and their built up sections. Related Numerical.	2	Concepts and Numerical
	Moment of Inertia: Introduction to the concept, Radius of gyration, Parallel axis theorem, Perpendicular axis theorem - computing moment of Inertia for – T, L, I and full/quadrant circular sections. Related Numerical.	2	Concepts and Numerical
13	Computing moment of Inertia for built-up sections. Related Numerical.	1	Concepts and Numerical
	Friction: Friction on inclined & horizontal planes. Related numerical, Ladder friction. Related numerical.	3	Concepts and Numerical
	Module-4		
SI. No	Details	Duration in hours	Remarks
	Kinematics: Definitions, Displacement, Average velocity, Instantaneous velocity, Speed, Acceleration, Average acceleration, Variable acceleration, Acceleration due to gravity, Newton's Laws of Motion.	2	Concepts and Numerical
18	Rectilinear Motion-Numerical problems. Curvilinear Motion-	2	Concepts and Numerical
	Super elevation, Projectile Motion, Relative motion, Numerical problems. Motion under gravity, Numerical problems.	2	Concepts and Numerical
20	Kinetics: D' Alembert's principle and its applications in plane motion and connected bodies including pulleys	2	Concepts and Numerical
	Module-5		
Sl. No	Details	Duration in hours	Remarks
	Smart Cities: Smart city – Challenges in Urbanization – Features of smart city - Strategic development – Selection process of smart cities.	2	Self-study component (case study on smart city)
	Key outcomes of smart city - Guiding Principles –Structuring of smart city - Smart cities - ecosystem, stakeholders and market dynamics - Smart solutions for smart cities.	2	
	Green Building Concept: What is Green Building, Why to go for Green Building, Benefits of Green Buildings, Green Building Materials and Equipment in India.	2	Self-study components (Case study on green buildings)
	What are key Requisites for Constructing a Green Building, Important Sustainable features for Green Building	2	-

Suggested Learning Resources:

Text Books

- 1. Shesha Prakash M.N and Ganesh. B. Mogaveer, "Elements of Civil Engineering and Engineering Mechanics", PHI Learning, 3rd Revised edition (2014).
- **2.** Russell C Hibbeler and Ashok Gupta (2010), Engineering Mechanics: Statics and Dynamics (11th Edition), Published by Pearson Education Inc., Prentice Hall.
- **3.** Beer, Johnston, Cornwell and Sanghi (2013) Vector Mechanics for Engineers: Statics and Dynamics, 10th Edition, McGraw-Companies, Inc., New York.
- **4.** Bhavikatti, S.S, "Elements of Civil Engineering and Mechanics", New Age International Publisher, 6th edition, 2019.
- 5. Basudeb Bhattacharyya, "Engineering Mechanics", Oxford University Press, 4th edition, 2010.
- 6. Dr N Mani, "N Mani Smart Cities & Urban Development in India", New Century Publications, 12 August 2016.
- 7. Tomwoolley and Samkimings, "Green Building Hand Book" 2009.

References:

- 1. Timoshenko and Young, "Engineering Mechanics", McGraw Hill Publishers, 5th edition 2013.
- 2. Nelson A, "Engineering Mechanics-Statics and Dynamics", Tata McGraw Hill Education Private Ltd, 1st edition, 2009.
- **3.** Smart Cities Mission Statement and Guidelines, Ministry of Urban Development, Government of India, June 2015.
- **4.** Smart Cities in India: Framework for ICT Infrastructure, Telecom Regulatory Authority of India, New Delhi, September 2020.
- 5. Making a city smart: Learnings from the Smart Cities Mission, Ministry of Housing and Urban Affairs, Government of India, March 2021.
- 6. Complete Guide to Green Buildings by Trish riley.

Module wise Text Books/Reference Books

Module	Text / Reference Book
1	• Shesha Prakash M.N and Ganesh. B. Mogaveer, "Elements of Civil Engineering and
	Engineering Mechanics", PHI Learning, 3rd Revised edition (2014).
	• Bhavikatti, S.S, "Elements of Civil Engineering and Mechanics", New Age
	International Publisher, 6 th edition, 2019.
2	• Shesha Prakash M.N and Ganesh. B. Mogaveer, "Elements of Civil Engineering and
	Engineering Mechanics", PHI Learning, 3rd Revised edition (2014).
	• Bhavikatti, S.S, "Elements of Civil Engineering and Mechanics", New Age
	International Publisher, 6 th edition, 2019.
	• Basudeb Bhattacharyya, "Engineering Mechanics", Oxford University Press, 4 th edition, 2010.
3	• Shesha Prakash M.N and Ganesh. B. Mogaveer, "Elements of Civil Engineering and
	Engineering Mechanics", PHI Learning, 3rd Revised edition (2014).
	• Bhavikatti, S.S., "Elements of Civil Engineering and Mechanics", New Age
	International Publisher, 6 th edition, 2019.
	• Timoshenko and Young, "Engineering Mechanics", McGraw Hill Publishers, 5 th
	edition 2013.
4	• Shesha Prakash M.N and Ganesh. B. Mogaveer, "Elements of Civil Engineering and
	Engineering Mechanics", PHI Learning, 3rd Revised edition (2014).
	• Bhavikatti, S.S, "Elements of Civil Engineering and Mechanics", New Age
	International Publisher, 6 th edition, 2019.
	• Nelson A, "Engineering Mechanics-Statics and Dynamics", Tata McGraw Hill
	Education Private Ltd, 1 st edition, 2009.
5	• Dr N Mani, "N Mani Smart Cities & Urban Development in India", New Century
	Publications, 12 August 2016.
	 Tomwoolley and Samkimings, "Green Building Hand Book" 2009. Smart Cities Mission Statement and Guidelines, Ministry of Urban Development,
	• Smart Cities Mission Statement and Guidelines, Ministry of Urban Development, Government of India, June 2015.
	• Smart Cities in India: Framework for ICT Infrastructure, Telecom Regulatory
	Authority of India, New Delhi, September 2020.
	 Making a city smart: Learnings from the Smart Cities Mission, Ministry of Housing
	and Urban Affairs, Government of India, March 2021.
	• Complete Guide to Green Buildings by Trish riley.

DEPARTMENT OF ELETRONICS COMMUNICATION ENGINEERING

	Elements of Electronics Engineering-21EC14/24 Blow-up Syllabus					
	Module 1					
Sl. No.	Details	Duration in Hours	Remarks			
1	Principles of Semiconductors -Definition, types of semiconductors and Characteristics.	$\frac{1}{2}$	Self-study component/ Conduct quiz (No Question to be set for SEE)			
2	P-N junction diode and applications: Diode operation (Forward and Reverse bias), Voltage- Current(V-I) characteristics of diode,	1	Discussion of concepts			
3	Diode models, Rectification-Half wave rectifier, Full wave rectifier, Bridge rectifier: -Working	$1\frac{1}{2}$	Numerical on Diode models			
4	Parameters-ripple factor, efficiency, peak inverse voltage, Capacitor filter circuit.	02	Numerical on Rectifier- Parameters			
5	Special purpose diodes: Zener Diode-Characteristics, Zener diode application as a voltage regulator. Light Emitting Diode (LED) -operation and applications.	02	Numerical on Zener diode as regulator			
6	Tutorial	1	Involvement of students in respect of their doubts about the module and numerical problems			
	Module 2					
Sl. No.	Details	Duration in Hours	Remarks			
7	Bipolar Junction Transistor and Applications (BJT): Construction, operation and parameters.	1	Discussion of concepts			
8	BJT Common Base, Common Emitter and Common Collector configurations.	$1\frac{1}{2}$	Discussion of concepts			
9	BJT biasing, operating point, Biasing circuits –Voltage divider bias.	$1\frac{1}{2}$	Numericals on Voltage divider bias			
10	Self-bias, fixed bias- biasing circuits	$\frac{1}{2}$	Self-study component/Conduct quiz(No Question to be set for SEE)			
11	BJT as a switch, Transistor switch circuit to switch ON/OFF an LED and a lamp in a power circuit using a relay	$\frac{1}{2}$	Discussion of concepts			
12	Metal Oxide Semiconductor FET: Depletion and Enhancement type MOSFET-Construction, Operation, Characteristics and Symbols, CMOS as an inverter.	$1\frac{1}{2}$	Numerical on MOSFET characteristics			

13	Field Effect Transistor(FET)-Construction, Operation,	1	Self-study component/Conduct
	Characteristics and Symbols	2	quiz(No Question to be set for
			SEE)
14	Tutorial	1	Involvement of students in
			respect of their doubts about the
			module and
			numerical problems
	Module 3		
Sl.	Details	Duration	Remarks
No.		in Hours	
15	Operational amplifiers: Introduction to Op-Amp, Op-Amp		Discussion of concepts
	Parameters,	1	
16	Applications of Op-Amp: Inverting amplifier, Non-		Numerical on applications
	Inverting amplifier, Summer, Voltage follower, Integrator,	2	
	Differentiator, Comparator.		
17	Feedback: Feedback concepts, feedback connection types,	1	Numerical on Voltage series
	Voltage series feedback, Gain stability with feedback.	$1\frac{1}{2}$	feedback
18	Positive feedback: Barkhaunsen's criteria for oscillation	2	Numerical on RC Phase Shift
10	Sinusoidal Oscillators - RC Phase Shift oscillator,	1	oscillator
19	Wien Bridge oscillator, Hartley, Colpitts and Crystal		Numerical
17	oscillator .	1 ¹	i vuineneur
		$1\frac{1}{2}$	
20	Tutorial	1	Involvement of students in
			respect of their doubts about the
			module and
			numerical problems
	Module 4		
Sl.	Module 4 Details	Duration	Remarks
Sl. No.	Details	Duration in Hours	
	Details Communication System: Introduction, Elements of		Remarks Discussion of concepts
	Details Communication System: Introduction, Elements of Communication Systems, Basics of wireless		
	Details Communication System: Introduction, Elements of Communication Systems, Basics of wireless communication systems and Cellular communication		
	Details Communication System: Introduction, Elements of Communication Systems, Basics of wireless communication systems and Cellular communication (GSM).		Discussion of concepts
	Details Communication System: Introduction, Elements of Communication Systems, Basics of wireless communication systems and Cellular communication (GSM). Difference between analog and digital signals, Number	in Hours	Discussion of concepts Self-study component/Conduct
	Details Communication System: Introduction, Elements of Communication Systems, Basics of wireless communication systems and Cellular communication (GSM). Difference between analog and digital signals, Number System representation and conversion -Decimal, Binary,	in Hours	Discussion of concepts Self-study component/Conduct quiz(No Question to be set for
	Details Communication System: Introduction, Elements of Communication Systems, Basics of wireless communication systems and Cellular communication (GSM). Difference between analog and digital signals, Number System representation and conversion -Decimal, Binary, octal and Hexadecimal from one system to the other.	in Hours	Discussion of concepts Self-study component/Conduct quiz(No Question to be set for SEE)
	Details Communication System: Introduction, Elements of Communication Systems, Basics of wireless communication systems and Cellular communication (GSM). Difference between analog and digital signals, Number System representation and conversion -Decimal, Binary, octal and Hexadecimal from one system to the other. Digital Electronics: Boolean algebra, Basic and Universal	in Hours $\frac{1}{2}$	Discussion of concepts Self-study component/Conduct quiz(No Question to be set for
	Details Communication System: Introduction, Elements of Communication Systems, Basics of wireless communication systems and Cellular communication (GSM). Difference between analog and digital signals, Number System representation and conversion -Decimal, Binary, octal and Hexadecimal from one system to the other. Digital Electronics: Boolean algebra, Basic and Universal Gates, Combinational circuits: Half and Full adder,	in Hours	Discussion of concepts Self-study component/Conduct quiz(No Question to be set for SEE)
	Details Communication System: Introduction, Elements of Communication Systems, Basics of wireless communication systems and Cellular communication (GSM). Difference between analog and digital signals, Number System representation and conversion -Decimal, Binary, octal and Hexadecimal from one system to the other. Digital Electronics: Boolean algebra, Basic and Universal Gates, Combinational circuits: Half and Full adder, Multiplexer, Decoder	in Hours $\frac{1}{2}$	Discussion of concepts Self-study component/Conduct quiz(No Question to be set for SEE)
	Details Communication System: Introduction, Elements of Communication Systems, Basics of wireless communication systems and Cellular communication (GSM). Difference between analog and digital signals, Number System representation and conversion -Decimal, Binary, octal and Hexadecimal from one system to the other. Digital Electronics: Boolean algebra, Basic and Universal Gates, Combinational circuits: Half and Full adder, Multiplexer, Decoder	in Hours $\frac{1}{2}$ 2	Discussion of concepts Self-study component/Conduct quiz(No Question to be set for SEE) Numerical on all the concepts
	Details Communication System: Introduction, Elements of Communication Systems, Basics of wireless communication systems and Cellular communication (GSM). Difference between analog and digital signals, Number System representation and conversion -Decimal, Binary, octal and Hexadecimal from one system to the other. Digital Electronics: Boolean algebra, Basic and Universal Gates, Combinational circuits: Half and Full adder, Multiplexer, Decoder Transducers: Strain gauge, Linear variable differential transducer (LVDT), Piezoelectric transducer.	in Hours $\frac{1}{2}$	Discussion of concepts Self-study component/Conduct quiz(No Question to be set for SEE) Numerical on all the concepts Discussion of concepts
	Details Communication System: Introduction, Elements of Communication Systems, Basics of wireless communication systems and Cellular communication (GSM). Difference between analog and digital signals, Number System representation and conversion -Decimal, Binary, octal and Hexadecimal from one system to the other. Digital Electronics: Boolean algebra, Basic and Universal Gates, Combinational circuits: Half and Full adder, Multiplexer, Decoder Transducers: Strain gauge, Linear variable differential transducer (LVDT), Piezoelectric transducer. Electronic Instruments: Oscilloscope, Displaying a	in Hours $\frac{1}{2}$ 2 $1\frac{1}{2}$	Discussion of concepts Self-study component/Conduct quiz(No Question to be set for SEE) Numerical on all the concepts Discussion of concepts Discussion of concepts
	Details Communication System: Introduction, Elements of Communication Systems, Basics of wireless communication systems and Cellular communication (GSM). Difference between analog and digital signals, Number System representation and conversion -Decimal, Binary, octal and Hexadecimal from one system to the other. Digital Electronics: Boolean algebra, Basic and Universal Gates, Combinational circuits: Half and Full adder, Multiplexer, Decoder Transducers: Strain gauge, Linear variable differential transducer (LVDT), Piezoelectric transducer.	in Hours $\frac{1}{2}$ 2	Discussion of concepts Self-study component/Conduct quiz(No Question to be set for SEE) Numerical on all the concepts Discussion of concepts Discussion of concepts/Demonstration of the
	Details Communication System: Introduction, Elements of Communication Systems, Basics of wireless communication systems and Cellular communication (GSM). Difference between analog and digital signals, Number System representation and conversion -Decimal, Binary, octal and Hexadecimal from one system to the other. Digital Electronics: Boolean algebra, Basic and Universal Gates, Combinational circuits: Half and Full adder, Multiplexer, Decoder Transducers: Strain gauge, Linear variable differential transducer (LVDT), Piezoelectric transducer. Electronic Instruments: Oscilloscope, Displaying a	in Hours $\frac{1}{2}$ 2 $1\frac{1}{2}$	Discussion of concepts Self-study component/Conduct quiz(No Question to be set for SEE) Numerical on all the concepts Discussion of concepts Discussion of concepts
	Details Communication System: Introduction, Elements of Communication Systems, Basics of wireless communication systems and Cellular communication (GSM). Difference between analog and digital signals, Number System representation and conversion -Decimal, Binary, octal and Hexadecimal from one system to the other. Digital Electronics: Boolean algebra, Basic and Universal Gates, Combinational circuits: Half and Full adder, Multiplexer, Decoder Transducers: Strain gauge, Linear variable differential transducer (LVDT), Piezoelectric transducer. Electronic Instruments: Oscilloscope, Displaying a waveform in Oscilloscope, Digital Multimeter.	in Hours $\frac{1}{2}$ 2 $1\frac{1}{2}$ $1\frac{1}{2}$	Discussion of concepts Self-study component/Conduct quiz(No Question to be set for SEE) Numerical on all the concepts Discussion of concepts Discussion of concepts Discussion of the instruments
	Details Communication System: Introduction, Elements of Communication Systems, Basics of wireless communication systems and Cellular communication (GSM). Difference between analog and digital signals, Number System representation and conversion -Decimal, Binary, octal and Hexadecimal from one system to the other. Digital Electronics: Boolean algebra, Basic and Universal Gates, Combinational circuits: Half and Full adder, Multiplexer, Decoder Transducers: Strain gauge, Linear variable differential transducer (LVDT), Piezoelectric transducer. Electronic Instruments: Oscilloscope, Displaying a	in Hours $\frac{1}{2}$ 2 $1\frac{1}{2}$	Discussion of concepts Self-study component/Conduct quiz(No Question to be set for SEE) Numerical on all the concepts Discussion of concepts Discussion of concepts Involvement of students in
	Details Communication System: Introduction, Elements of Communication Systems, Basics of wireless communication systems and Cellular communication (GSM). Difference between analog and digital signals, Number System representation and conversion -Decimal, Binary, octal and Hexadecimal from one system to the other. Digital Electronics: Boolean algebra, Basic and Universal Gates, Combinational circuits: Half and Full adder, Multiplexer, Decoder Transducers: Strain gauge, Linear variable differential transducer (LVDT), Piezoelectric transducer. Electronic Instruments: Oscilloscope, Displaying a waveform in Oscilloscope, Digital Multimeter.	in Hours $\frac{1}{2}$ 2 $1\frac{1}{2}$ $1\frac{1}{2}$	Discussion of concepts Self-study component/Conduct quiz(No Question to be set for SEE) Numerical on all the concepts Discussion of concepts Discussion of concepts Discussion of the instruments Involvement of students in respect of their doubts about the
	Details Communication System: Introduction, Elements of Communication Systems, Basics of wireless communication systems and Cellular communication (GSM). Difference between analog and digital signals, Number System representation and conversion -Decimal, Binary, octal and Hexadecimal from one system to the other. Digital Electronics: Boolean algebra, Basic and Universal Gates, Combinational circuits: Half and Full adder, Multiplexer, Decoder Transducers: Strain gauge, Linear variable differential transducer (LVDT), Piezoelectric transducer. Electronic Instruments: Oscilloscope, Displaying a waveform in Oscilloscope, Digital Multimeter.	in Hours $\frac{1}{2}$ 2 $1\frac{1}{2}$ $1\frac{1}{2}$	Discussion of concepts Self-study component/Conduct quiz(No Question to be set for SEE) Numerical on all the concepts Discussion of concepts Discussion of concepts Involvement of students in respect of their doubts about the module and
	Details Communication System: Introduction, Elements of Communication Systems, Basics of wireless communication systems and Cellular communication (GSM). Difference between analog and digital signals, Number System representation and conversion -Decimal, Binary, octal and Hexadecimal from one system to the other. Digital Electronics: Boolean algebra, Basic and Universal Gates, Combinational circuits: Half and Full adder, Multiplexer, Decoder Transducers: Strain gauge, Linear variable differential transducer (LVDT), Piezoelectric transducer. Electronic Instruments: Oscilloscope, Displaying a waveform in Oscilloscope, Digital Multimeter.	in Hours $\frac{1}{2}$ 2 $1\frac{1}{2}$ $1\frac{1}{2}$	Discussion of concepts Self-study component/Conduct quiz(No Question to be set for SEE) Numerical on all the concepts Discussion of concepts Discussion of concepts Discussion of the instruments Involvement of students in respect of their doubts about the

	Module 5				
Sl.	Details	Duration	Remarks		
No.		in Hours			
	Application of Electronic systems Green tech application: Wind turbine for small power application	2	Discussion of the application		
	Liquid level control system	2	Discussion of the application		
	pH neutralization system for wastewater treatment	2	Discussion of the application		
	RFID system, Demonstration: RFID system for an application.	2	Discussion of the application		

Department of Electrical & Electronics Engineering BLOW-UP SYLLABUS (Common to all the branches)

AY/Semester: 2021-22/ I/II

Subject: Elements of Electrical Engineering

Course Code: 21EE13/23

Session No.	Topics	No. of Hours	Delivery Method	Assessm ent Method
Module	e: 1 D. C. Circuits		·	
1	1.1 Introduction, Preamble	1	Class room teaching / PPT presentation	CIE
2	1.2 Ohm's Law, Series and Parallel Connection of Resistors	1	Class room teaching / PPT presentation	CIE
3	1.3 Kirchhoff's Laws with independent sources	1	Class room teaching / PPT presentation.	CIE
4	1.4 Power and Energy in Electrical Circuit, Illustrative Examples	1	Class room teaching / PPT presentation/Ass ignment.	CIE
5	1.5 Introduction to AC, Generation AC voltage	1	Class room teaching / PPT presentation	CIE
6	1.6 Definition and derivation of Average and RMS values, form factor and peak factor	1	Class room teaching / PPT presentation	CIE
7	1.7 Phasor representation of alternating quantities		Class room teaching / PPT presentation	CIE
8	1.8 Hands-on session -	1	Class room teaching/Assign ment	CIE
	n training topics: Reading color code and obtaining given Value Resistors.			ising
	Module: 2 Analysis of Single-pha	ase A.C. (
9	2.1 R-circuit and L-Circuit Analysis	1	Class room teaching / PPT presentation	CIE

10	2.2 C- circuit, RL series- circuit analysis	1	Class room teaching / PPT presentation	CIE
11	2.3 RC, RLC- Circuit analysis	1	Class room teaching / PPT presentation	CIE
12	2.4 Parallel R-L-C circuits, illustrative examples	1	Class room teaching/Assign ment	CIE
13	2.5 Service Mains, Meter board, distribution board, Two way and Three way control of Lamp	1	Class room teaching / PPT	CIE
14	2.6 Fuse and MCB, Electric Shock-effects and precautions	1	Class room teaching / PPT presentation	CIE
15	2.7 Earthling- Plate and Pipe earthling.	1	Class room teaching / PPT presentation	CIE
16	2.8 Hands-on session	1	Class room teaching / PPT presentation	CIE
	on training topics: Checking the phase, neutral and earthin/tester/multi-meter.			d using the
	Module: 3 Three Phas	se Circuit		-
17	3.1 Introduction to three phase systems, necessity and advantages,	1	Class room teaching / PPT presentation	CIE
18	3.2 Generation of Three phase power, phase sequence, balanced and unbalanced supply and load	1	Class room teaching / PPT presentation	CIE
19	3.3 Star and Delta connection, relation between line and phase quantities	1	Class room teaching / PPT presentation	CIE
20	3.4 Measurement of power in three phase circuit, illustrative examples	1	Class room teaching / PPT presentation/Nu merical	CIE
21	3.5 Introduction to generators, principle of operation, Constructional features	1	Class room teaching / PPT presentation/Ass ignment	CIE
22	3.6 Constructional features, emf equation,	1	Class room teaching / PPT presentation	CIE
23	3.7 Illustrative examples	1	Class room teaching / PPT presentation/Ass ignment	CIE

24	3.8 Hands-on session	1	Class room teaching/Assign ment	CIE
Hands of mac			r through cut sectio	n models
		ormers:		
25	4.1 Introduction to Transformers, principle of operation, core type transformer	1	Class room teaching / PPT presentation	CIE
26	4.2 Shell type transformer, emf equation, illustrative examples	1	Class room teaching / PPT/Assignment	CIE
27	4.3 Losses and efficiency in transformers	1	Class room teaching / PPT/Assignment	CIE
28	4.4 Voltage regulation, illustrative examples	1	Class room teaching / PPT/Assignment	CIE
29	4.5 Introduction to Induction motor, construction,	1	Class room teaching / PPT/Assignment	CIE
30	4.6 Concept of rotating magnetic field, principle of operation	1	Class room teaching / PPT/Assignment	CIE
31	4.7 Slip and its significance, Application, starting of IM	1	Class room teaching / PPT presentation	CIE
32	4.8 Hands – on session	1	Class room teaching/Assign ment	
Hands of	on training topics: Verification of Primary and Secondary ve	oltages of	a Transformer	1
	Module: 5 DC Machines			
Self-st	udy topics:			
33	5.1 Introduction to DC machines, working principle of DC generator,	1	Class room teaching / PPT presentation	CIE
34	5.2 Construction and types of DC machine,	1	Class room teaching / PPT presentation	CIE
35	5.3 Emf equation of dc generator, illustrative examples	1	Class room teaching / PPT presentation	CIE
36	5.4 Working principle of dc motor, back emf and its significance, Types of dc motors	1	Class room teaching / PPT presentation	CIE

37	5.5 Torque equation and characteristics of shunt dc	1	Class room	CIE
	motor		teaching	
38	5.6 Characteristics of series dc motor Illustrative	1	Class room	CIE
	examples on torque		teaching / PPT	
			presentation/Ass	
			ignment	
39	5.7 Application and starting of dc motors	1	Class room	
			teaching / PPT	
			presentation	
40.	Revision of Important topics	1	Class room	CIE
			teaching /	
			PPT/Assignment	

Self- Study Topics:

Electric Vehicles: Introduction, Components of EV, General layout of EV, Classification, Advantages and Disadvantages of EV

Suggested learning resources:

Textbooks:

- 1. D.C. Kulshreshtha, "Basic Electrical Engineering", Tata McGraw Hill, 2nd edition, June 2019.
- 2. V.K. Mehta, Rohit Mehta, "Principles of Electrical Engineering & Electronics", S. Chand Publications, 2nd edition, 2019.

References:

- 1. E. Hughes, "Electrical and Electronics Technology", Pearson Education, 12th edition, 2016.
- 2. S.S. Parker Smith and N.N Parker Smith, "Problems in Electrical Engineering "CBS publishers & Distributors Pvt Ltd, 9th edition, 2018
- **3.** D.P. Kothari and I.J. Nagrath, "Theory and Problems of Basic Electrical Engineering", PHI learning Private Limited, 2nd edition, 2017

Module wise Reference books /Text books:

Module	Article No.	Text Books/Reference books		
1	1.1			
1		1. D.C. Kulshreshtha, "Basic Electrical Engineering", Tata McGraw Hill, 2nd edition, June 2019.		
	1.2			
	1.3	2. V.K. Mehta, Rohit Mehta, "Principles of Electrical		
	1.4	Engineering & Electronics", S. Chand Publications, 2nd		
	1.5	edition, 2019.		
	1.6	3. E. Hughes, "Electrical and Electronics Technology",		
	1.7	Pearson Education, 12th edition, 2016.		
	1.8	4. S.S. Parker Smith and N.N Parker Smith, "Problems in		
		Electrical Engineering "CBS publishers & Distributors Pvt		
		Ltd, 9th edition, 2018(Numericals)		
2	2.1	1. D.C. Kulshreshtha, "Basic Electrical Engineering", Tata		
	2.2	McGraw Hill, 2nd edition, June 2019.		
	2.3	2. V.K. Mehta, Rohit Mehta, 'Principles of Electrical		
	2.4	Engineering & Electronics", S. Chand Publications, 2nd		
	2.5	edition, 2019.		
	2.6	3. E. Hughes, "Electrical and Electronics Technology",		
	2.7	Pearson Education, 12th edition, 2016.		
	2.8	4. S.S. Parker Smith and N.N Parker Smith, "Problems in		
		Electrical Engineering "CBS publishers & Distributors Pvt		
		Ltd, 9th edition, 2018		
3	3.1	1. D.C. Kulshreshtha, "Basic Electrical Engineering", Tata		
	3.2	McGraw Hill, 2nd edition, June 2019.		
	3.3	2. V.K. Mehta, Rohit Mehta, "Principles of Electrical		
	3.4	Engineering & Electronics", S. Chand Publications, 2nd		
	3.5	edition, 2019.		
	3.6	3. D.P. Kothari and I.J. Nagrath, "Theory and Problems of		
	3.7	Basic Electrical Engineering", PHI learning Private Limited,		
	3.8	2nd edition, 2017		
		4. S.S. Parker Smith and N.N Parker Smith, "Problems in		
		Electrical Engineering "CBS publishers & Distributors Pvt		
		Ltd, 9th edition, 2018		
4	4.1	1. D.C. Kulshreshtha, "Basic Electrical Engineering", Tata		
	4.2	McGraw Hill, 2nd edition, June 2019.		
	4.3	2. V.K. Mehta, Rohit Mehta, "Principles of Electrical		
	4.4	Engineering & Electronics", S. Chand Publications, 2nd		
	4.5	edition, 2019.		
	4.6	3. E. Hughes, "Electrical and Electronics Technology",		
	4.7	Pearson Education, 12th edition, 2016.		
	4.7	4. S.S. Parker Smith and N.N Parker Smith, "Problems in		
	 0	Electrical Engineering "CBS publishers & Distributors Pvt		
		Ltd, 9th edition, 2018		

5	5.1	1. D.C. Kulshreshtha, "Basic Electrical Engineering", Tata
	5.2	McGraw Hill, 2nd edition, June 2019.
		2. V.K. Mehta, Rohit Mehta, "Principles of Electrical
	5.3	Engineering & Electronics", S. Chand Publications, 2nd
	5.4	edition, 2019.
		3. E. Hughes, "Electrical and Electronics Technology",
	5.5	Pearson Education, 12th edition, 2016.
	5.6	4. S.S. Parker Smith and N.N Parker Smith, "Problems in
Electrical Engineering "CBS published		Electrical Engineering "CBS publishers & Distributors Pvt
	5.7	Ltd, 9th edition, 2018
	5.8	5. D.P. Kothari and I.J. Nagrath, "Theory and Problems of
	5.0	Basic Electrical Engineering", PHI learning Private Limited,
		2nd edition, 2017

Department Of Electronics Telecommunication Engineering

	Basic Electronics Engineering-21EC Blow-up Syllabus	14/24	
	Module 1		
Sl. No.	Details	Duration in Hours	Remarks
1	Principles of Semiconductors -Definition, types of semiconductors and Characteristics.	$\frac{1}{2}$	Self-study component/ Conduct quiz (No Question to be set
2	P-N junction diode and applications: Diode operation(Forward and Reverse bias), Voltage- Current(V-	1	for SEE) Discussion of concepts
3	I) characteristics of diode, Diode models, Rectification-Half wave rectifier, Full wave rectifier, Bridge rectifier: -Working	$1\frac{1}{2}$	Numericals on Diode models
4	Parameters-ripple factor, efficiency, peak inverse voltage, Capacitor filter circuit.	02	Numericals on Rectifier- Parameters
5	Special purpose diodes: Zener Diode-Characteristics, Zener diode application as a voltage regulator. Light Emitting Diode (LED) -operation and applications.	02	Numericals on Zener diode as regulator
6	Tutorial	1	Involvement of students in respect of their doubts about the module and numerical problems
	Module 2		1
Sl. No.	Details	Duration in Hours	Remarks
7	Bipolar Junction Transistor and Applications (BJT): Construction, operation and parameters.	1	Discussion of concepts
8	BJT Common Base, Common Emitter and Common Collector configurations.	$1\frac{1}{2}$	Discussion of concepts
9	BJT biasing, operating point, Biasing circuits –Voltage divider bias.	$1\frac{1}{2}$	Numericals on Voltage divider bias
10	Self-bias, fixed bias- biasing circuits	$\frac{1}{2}$	Self-study component/Conduct quiz(No Question to be set for SEE)
11	BJT as a switch, Transistor switch circuit to switch ON/OFF an LED and a lamp in a power circuit using a relay	$\frac{1}{2}$	Discussion of concepts

10			
12	Metal Oxide Semiconductor FET: Depletion and	.1	Numerical on MOSFET
	Enhancement type MOSFET-Construction, Operation,	$1\frac{1}{2}$	characteristic s
12	Characteristics and Symbols, CMOS as an inverter. Field Effect Transistor(FET)-Construction, Operation,	1	Calf stades
13	Field Effect Transistor(FET)-Construction, Operation, Characteristics and Symbols	<u> </u>	Self-study
	Characteristics and Symbols	2	component/Conduct
			quiz(No Question to be
			set for SEE)
14	Tutorial	1	Involvement of students
			in respect of their
			doubts about the
			module and
			numerical problems
	Module 3		numerical proberts
Sl.	Details	Duration	Remarks
	Details		KellialkS
No.		in Hours	
15	Operational amplifiers: Introduction to Op-Amp, Op-Amp	1	Discussion of concepts
	Parameters,	1	
16	Applications of Op-Amp: Inverting amplifier, Non-		Numerical on
	Inverting amplifier, Summer, Voltage follower, Integrator,	2	applications
	Differentiator, Comparator.		
17	Feedback: Feedback concepts, feedback connection types,	4	Numerical on Voltage
	Voltage series feedback, Gain stability with feedback.	$1\frac{1}{2}$	series feedback
10	Positive feedback: Barkhaunsen's criteria for oscillation	2	
18		1	Numerical on RC Phase
	Sinusoidal Oscillators - RC Phase Shift oscillator,	1	Shift oscillator
19	Wien Bridge oscillator, Hartley, Colpitts and Crystal	4	Numerical
	oscillator.	$1\frac{1}{2}$	
20	Tutorial	1	Involvement of students
20	Tutorial	1	
			in respect of their
			doubts about the
			module and
			numerical problems
	Module 4		
Sl.	Details	Duration	Remarks
No.		in Hours	
	Communication System: Introduction, Elements of		Discussion of concepts
	Communication Systems, Basics of wireless	$1\frac{1}{2}$	
	communication systems and Cellular communication	2	
	(GSM).		
	Difference between analog and digital signals, Number		Self-study
	System representation and conversion -Decimal, Binary,	1	component/Conduct
	octal and Hexadecimal from one system to the other.	$\frac{1}{2}$	quiz(No Question to be
	· · · · · · · · · · · · · · · · · · ·	2	1
	Distal Electronica Declara declara Decisional U.		set for SEE)
	Digital Electronics: Boolean algebra, Basic and Universal	2	Numerical on all the
	Gates, Combinational circuits: Half and Full adder,	2	concepts
	Multiplexer, Decoder		Diama 6
	Transducers: Strain gauge, Linear variable differential	. 1	Discussion of concepts
	transducer (LVDT), Piezoelectric transducer.	$1\frac{1}{2}$	
L		4	

	Electronic Instruments: Oscilloscope, Displaying a waveform in Oscilloscope, Digital Multimeter.	$1\frac{1}{2}$	Discussion of concepts/Demonstration of the instruments
	Tutorial	1	Involvement of students in respect of their doubts about the
			module and numerical problems
	Module 5		
S1.	Details	Duration	Remarks
No.		in Hours	
	Application of Electronic systems Green tech application: Wind turbine for small power application	2	Discussion of the application
	Liquid level control system	2	Discussion of the application
	pH neutralization system for wastewater treatment	2	Discussion of the application
	RFID system, Demonstration: RFID system for an application.	2	Discussion of the application

Department of Mathematics

BLOW UP SYLLABUS CALCULUS AND DIFFERENTIAL EQUATIONS (21MA11) (Common to all Branches) (Effective from the academic year 2021-22)

	MO	DDULE – I	
Sl.	Details	Duration	Remarks
No		in Hours	
1.	1.1 Preamble: Understanding the	0.5	To understand the relevance of
	importance of the study of Calculus		studying this course
	and its applications in the field of		
	Engineering and Economics.	1	
2.	1.2 Differential Calculus :	1	Self-Learning Component –
	Determination of n^{th} order		Determination of n th order derivatives of standard
	derivatives of standard functions -		derivatives of standard functions (derivation).
	Problems. Leibnitz's theorem		luncuons (derivation).
	(without proof)-problems.		
3.	1.3 Polar curves - Angle between	2	Discussion restricted to
	the radius vector and tangent, angle		derivation and problems.
	between two curves, Pedal equation		Applications to be able to
	of polar curves. Application of Polar		understand its relevance in real
4	curves – Position and Navigation.	1	life applications.
4.	1.4 Taylor's and Maclaurin's	1	Discussion restricted to
	series for a function of a single variable-problems.		problems.
5.	Lab Session 1: Demonstrate	2	MATLAB sessions
5.	elementary math functions, Create	2	WAILAD SESSIONS
	and work with arrays.		
6.	Tutorials	1.5	Involvement of students in
0.		1.5	respect of their doubts and
			solving of numerical problems.
	Modu	le – II	
Sl.	Details	Duration	Remarks
No		in Hours	
7.	2.1 Partial derivatives: Definition	2	Self-Learning Component –
	and simple problems, Euler's		Proof of Euler's theorem.
	theorem (without proof) –		To be able to understand its
	problems, total derivatives, partial		relevance in real life
	differentiation of composite		applications.
	functions-problems. Application –		
	Study of temperature in a moving		
	car.		

8.	2.2 Definition and evaluation of Jacobians.	1	Discussion restricted to problems.
9.	2.3 Taylor's and Maclaurin's series of two variables-problems.	1	Discussion restricted to problems.
10.	Lab Session 2: Calculate the value of functions at different points, Using symbolic objects in computations.	2	MATLAB sessions
11.	Tutorials	2	Involvement of students in respect of their doubts and solving of numerical problems.
	Modu	le – III	
Sl. No	Details	Duration in Hours	Remarks
12.	3.1 Integral Calculus: Reduction formulae - $\int \sin^n x dx$, $\int \cos^n x dx$,	1	Self-LearningComponent –Proofofthereductionformula- $\int \sin^n x dx$,
	$\int \sin^{m} x \cos^{n} x dx$ (m and n are positive integers). Evaluation of these integrals with standard limits (0 to $\pi/2$) and problems.		$\int \cos^n x dx, \int \sin^m x \cos^n x dx$ (m and n are positive integers).
13.	3.2 Leibnitz rule for differentiation under the integral sign.	1	No derivation, only problems
14.	3.3 Applications: Finding the length, area, surface area and volume for Cartesian, polar and parametric curves.	2	Restricted to asteroid, cardiod and cycloid.
15.	Lab Session 3: Programming using an array (or matrix). Plot two dimensional Cartesian and polar curves.	2	MATLAB sessions
16.	Tutorials	2	Involvement of students in respect of their doubts and solving of numerical problems.
	Modu	e – IV	
Sl.	Details	Duration	Remarks
No		in Hours	
17.	4.1 Differential Equations: Solution of first order and first degree differential equations –Bernoulli's differential equations, exact, reducible to exact.	2	Self-LearningComponentVariableseparable,homogeneousandinearmethodsforsolvingdifferentialequations.Noderivations.Reducibleto

18.	4.2 Applications: Orthogonal	2	exact equations integrating factor is restricted to three cases only, viz: $\frac{1}{Mx + Ny}$ For a homogeneous function. $\frac{1}{M} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right), \frac{1}{N} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right),$ Discussion restricted to
	trajectories in Cartesian and polar form. Simple problems on Newton's law of cooling, LR-Circuit, Exponential growth and decay.		problems
19.	Lab Session 4: Set the line style, marker symbol, colour, label axes with text strings and title the graph with a text string in graphs, Plot multiple curves in one graph.	2	MATLAB sessions
20.	Tutorials	2	Involvement of students in respect of their doubts and solving of numerical problems
		le – V	
Sl.	Details	Duration	Remarks
No 21	5.1 Vactor Colorhan Derivative of	in Hours	Salf Learning Commonant
21.	5.1 Vector Calculus: Derivative of vector valued functions, Velocity, Acceleration and related problems, Scalar and Vector point functions. Unit tangent vector, Unit normal vector. Gradient of a scalar, Divergence of a vector, Directional derivative and Curl of a vector-problems. Solenoidal and Irrotational vector fields. Vector identities – div (ϕ A), div(grad ϕ), curl (ϕ A), curl (g rad ϕ), div (curl A). Application-Centre of mass, field theory, kinematics. Summary: The student will be able to analyze and apply various concepts related to vector calculus and differential equations.	4	Self-Learning Component – Derivative of vector valued functions, Velocity, Acceleration and related problems, Unit tangent vector, Unit normal vector.
	vector valued functions, Velocity, Acceleration and related problems, Scalar and Vector point functions. Unit tangent vector, Unit normal vector. Gradient of a scalar, Divergence of a vector, Directional derivative and Curl of a vector- problems. Solenoidal and Irrotational vector fields. Vector identities – div (ϕ A), div(grad ϕ), curl (ϕ A), curl (grad ϕ), div (curl A). Application- Centre of mass, field theory, kinematics. Summary: The student will be able to analyze and apply various concepts related to vector calculus and		Derivative of vector valued functions, Velocity, Acceleration and related problems, Unit tangent vector,

	with respect to one or more independent variables upto required order.		
23.	Tutorials	2	Involvement of students in respect of their doubts and solving of numerical problems

Text B	Books
1.	E. Kreyszig, Advanced Engineering Mathematics, 10th ed., John Wiley & Sons, 2015.
2.	B.S. Grewal, Higher Engineering Mathematics, 43rd ed., Khanna Publishers, 2015.
3.	N. P. Bali and Manish Goyal, A text book of Engineering Mathematics, 9th ed., Laxmi Publications (P) Ltd., 2014.
Refere	ence Books
1.	Srimanta Pal and Subodh C. Bhunia, Engineering Mathematics, 3rd ed., Oxford University Press, 2016.
2.	B. V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill, 6 th edition, 2010.
3.	H. K. Dass and Er. RajnishVerma, Higher Engineering Mathematics, 1st edition, S.
	Chand and Company Pvt. Ltd., 3 rd edition, 2014.

Module wise Text Books/Reference Books

Module	Article	Text Book/Reference Book
	No	
1	1.1	1. B.S. Grewal, Higher Engineering Mathematics, 43rd ed., Khanna
	1.2	Publishers, 2015.
	1.3	2. B. V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill, 6 th
	1.4	edition, 2010.
		3. Srimanta Pal and Subodh C. Bhunia, Engineering Mathematics, 3rd ed.,
		Oxford University Press, 2016.
2	2.1	1. B.S. Grewal, Higher Engineering Mathematics, 43rd ed., Khanna
	2.2	Publishers, 2015.
	2.3	2. B. V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill, 6 th
		edition, 2010.
		3. Srimanta Pal and Subodh C. Bhunia, Engineering Mathematics, 3rd ed.,
		Oxford University Press, 2016.
3	3.1	1. B.S. Grewal, Higher Engineering Mathematics, 43rd ed., Khanna
	3.2	Publishers, 2015.
	3.3	2. B. V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill, 6 th
		edition, 2010.
4	4.1	1. E. Kreyszig, Advanced Engineering Mathematics, 10th ed., John Wiley &
	4.2	Sons, 2015.
		2. B.S. Grewal, Higher Engineering Mathematics, 43rd ed., Khanna
		Publishers, 2015.
		3. B. V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill, 6 th
		edition, 2010.

		4. Srimanta Pal and Subodh C. Bhunia, Engineering Mathematics, 3rd ed., Oxford University Press, 2016.
		5. H. K. Dass and Er. RajnishVerma, Higher Engineering Mathematics, 1st edition, S. Chand and Company Pvt. Ltd., 3 rd edition, 2014.
5	5.1	 B.S. Grewal, Higher Engineering Mathematics, 43rd ed., Khanna Publishers, 2015. B. V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill, 6th edition, 2010. Srimanta Pal and Subodh C. Bhunia, Engineering Mathematics, 3rd ed., Oxford University Press, 2016. H. K. Dass and Er. RajnishVerma, Higher Engineering Mathematics, 1st edition, S. Chand and Company Pvt. Ltd., 3rd edition, 2014.

Department of Mathematics

BLOW UP SYLLABUS ADVANCED CALCULUS, LAPLACE TRANSFORMS & LINEAR ALGEBRA (21MA21) (Common to all Branches) (Effective from the academic year 2021-22)

	MODULE – 1		
Sl. No	Details	Duration in Hours	Remarks
1.	Introduction: A glimpse of the significance of Calculus, Differential Equations, Laplace Transforms and Linear Algebra in the field of Engineering, Statistics, Economics & Medicine.	0.5	To understand the relevance of studying this course
2.	1.1 Differential Calculus: Curvature and Radius of curvature- Cartesian, parametric, polar and pedal forms (without proofs)	2	Discussion restricted only to problems on Cartesian and polar curves
3.	1.2 Limits: Indeterminate forms - L' Hospital's rule $(0^0, \infty^0, 1^\infty)$	1	Discussion restricted to problems.
4.	1.3 Maxima and Minima for a function of two variables; Method of Lagrange multipliers with one subsidiary condition. Applications of Maxima and Minima with illustrative examples.	1	Discussion restricted to problems on Lagrange's multipliers.
5.	Self learning component: Centre and circle of curvature, Evolutes and involutes	-	No Questions to be set for SEE
6.	Lab Session 1: Using MATLAB, (i) Transform cartesian to polar coordinates in two dimension, cylindrical and spherical polar coordinates in three dimension (ii) Create 2D & 3D plots (cartesian, polar & parametric curves) (iii) Determine Curvature, Radius of Curvature & Evolutes (iv) Evaluate Maxima and Minima of functions of several variables	2	
7.	Tutorials	1.5	Involvement of students in respect of their doubts and solving of numerical problems.

	Module – 2		
Sl. No	Details	Duration in Hours	Remarks
8.	2.1 Differential Equations : Second and higher order homogeneous and non-homogeneous linear ODE with constant coefficients - Inverse differential operators	2	Discussion restricted to problems (Cases I-III). P.I. restricted to $R(x)=e^{ax}$, sinax, cosax, x^n for $f(D)y =$ R(x))
9.	2.2 Cauchy differential equations and Method of variation of parameters. Applications to oscillations of a spring and L-C-R circuits	2	Discussion restricted to problems. Applications to be able to understand its relevance in real life applications.
10.	Self learning component: Legendre differential equations & problems	-	No Question to be set for SEE
11.	Lab Session 2: Using MATLAB, (i) Solve LDE of second and higher order with constant & variable coefficients (ii) Obtain solution of initial and boundary value problems (iii) Determine the Laplace Transform of elementary functions (iv) Develop the Laplace Transform of periodic function, Heaviside (Unit Step) function and Dirac delta (Impulse) function (v) Evaluate the Inverse Laplace Transform of functions in s (vi) Solve ODE formulated for real world problems	2	
12.	Tutorials	2	Involvement of students in respect of their doubts and solving of numerical problems.
	Module – 3		
Sl. No	Details	Duration in Hours	Remarks
13.	3.1 Multiple Integrals: Review of elementary Integral Calculus; Multiple integrals: Evaluation of double and triple integrals; Evaluation of double integrals by change of order of integration and changing into polar coordinates Applications to find area (using double integration)	3.5	Discussion restricted to problems

	and volume (using triple integration)		
14.	3.2 Beta and Gamma functions : Definitions, Relation between Beta and Gamma functions and simple problems	1.5	Discussion restricted to problems and Proofs of $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ and relation between Beta and Gamma functions
15.	Self-learning component : Applications of double integrals to find surface area & triple integrals to find Centre of gravity	-	No Question to be set for SEE
16.	Lab Session 3 : Using MATLAB, (i) Evaluate double integrals (ii) Evaluate triple integrals	1	
17.	Tutorials	2	Involvement of students in respect of their doubts and solving of numerical problems.
	Module – 4		•
Sl.	Dataila	D	
No	Details	Duration in Hours	Remarks
	4.1 Laplace Transforms: Definition and Laplace transforms of elementary functions, Laplace Transforms of $e^{at}f(t), t^n f(t), n$ is a positive integer & $\frac{f(t)}{t}, t \neq 0$ (without proof), Periodic function (statement only)		Remarks Discussion restricted to problems
No	4.1 Laplace Transforms: Definition and Laplace transforms of elementary functions, Laplace Transforms of $e^{at}f(t), t^{n}f(t), n$ is a positive integer & $\frac{f(t)}{t}, t \neq 0$	in Hours	Discussion restricted
No 18.	4.1 Laplace Transforms: Definition and Laplace transforms of elementary functions, Laplace Transforms of elementary functions, Laplace Transforms of $e^{at}f(t), t^n f(t), n$ is a positive integer & $\frac{f(t)}{t}, t \neq 0$ (without proof), Periodic function (statement only) and Unit-step function – problems. 4.2 Inverse Laplace Transforms: Definition and problems, Convolution theorem to find the inverse Laplace Transforms (without Proof) and problems. Solution of linear differential equations using Laplace Transform technique. Applications of Laplace Transforms in Control	in Hours 3	Discussion restricted to problems Discussion restricted to problems related to algebraic, logarithmic & inverse trigonometric functions. Applications to be able to understand its relevance in real life

			their doubts and solving of numerical problems
	Module – 5		
Sl. No	Details	Duration in Hours	Remarks
22.	5.1 Linear Algebra: Rank of a matrix-echelon form. Solution of non-homogeneous system of linear equations – consistency; Gauss-elimination method, Gauss –Jordan method and Approximate solution by Gauss-Seidel method	2	Discussion restricted to problems
23.	 5.2 Eigen values and eigen vectors - Rayleigh's power method; Diagonalization of a square matrix of order two. Linear transformations & Quadratic forms - Definition with examples Applications of Linear Algebra to Electrical Circuits, Traffic Flow, Image Processing Techniques, Robotics 	2	Discussion restricted to problems. Applications to be able to understand its relevance in real life applications.
24.	Self learning component : Diagonalization of a square matrix of order three	-	No Question to be set for SEE
25.	Lab session 4 : Using MATLAB, (i) Create and work with matrices (ii) Solve non-homogeneous system of linear equations (iii)i Find the eigenvalues and eigenvectors of a square matrix	2	
23.	Tutorials	2	Involvement of students in respect of their doubts and solving of numerical problems

Suggested Learning Resources:

Text Books :

- E. Kreyszig, "Advanced Engineering Mathematics", 10th Edition (Reprint), John Wiley & Sons, 2016.
- 2. B.S. Grewal, "Higher Engineering Mathematics", 44th Edition, Khanna Publishers, 2018.
- 3. N.P. Bali and Manish Goyal, "A textbook of Engineering Mathematics", Latest Edition, Laxmi Publications.

References :

1. B.V. Ramana, "Higher Engineering Mathematics", 11th Edition, McGraw-Hill Education.

- 2. H. K. Dass and Er. Rajnish Verma, "Higher Engineering Mathematics", S. Chand Publication, 2014.
- 3. S. L. Ross, "Differential Equations", 3rd Edition, Wiley India, 1984.
- 4. V. Krishnamurthy, V.P. Mainra and J.L. Arora, "An Introduction to Linear Algebra", Reprint Affiliated East–West Press, 2005.

Module wise Text Books:

Module	Article	Text Books
	No	
	1.2	Article No.4.10, 4.11 (1, 2, 4, 5) of Text Book 2
1	1.3	Article No. 4.5 (III) of Text Book 2.
	1.4	Article No.5.11 & 5.12 of Text book 2
	2.1	Article No. 13.1, 13.2, 13.3, 13.4, 13.5 (Cases I-III), 13.6 & 13.7 of Text
		Book 2
2		Article No. 13.1-13.7 of Text Book 3
_	2.2	Article No.13.8 (1), 13.9 (I), 14.4 (1) & 14.5 (II) of Text Book 2
		Article No. 13.8 & 13.9 of Text Book 3
	3.1	Article No.7.1-7.5, 7.6 (2) of Text Book 2
3		Article 6.1-6.10 of Text Book 3
3	3.2	Article No.7.15 & 7.16 of Text Book 2
		Article 15.1-15.6 of Text Book 3
4	4.1	Article No.21.1 to 21.5, 21.7, 21.9, 21.10 & 21.17 of Text Book 2
4	4.2	Article No.21.12, 21.13, 21.14 & 21.15 of Text Book 2
	5.1	Article No.2.7 (1)-(6), 2.10, 28.6(1, 2) and 28.7(2) of Text Book 2
5	5.2	Article No. 4.0, 20.8 and 8.4 of Text Book 1
		Article No. 2.11, 2.13, 2.14, 2.16, 2.17 & 2.18 of Text Book 2

Department of Mechanical Engineering

ENGINEERING GRAPHICS 21ME14/24

Blow-up Syllabus (Common to all Branches)

	Module-1		
Sl. No	Details	Duration in hours	Remarks
1	 Importance of learning Engineering Graphics, Industrial /defence application, research in the field of ME, Impact of the course on societal and sustainable solutions. Introduction to Engineering graphics Drawing Instruments and their uses, relevant BIS conventions and standards. Lettering, line conventions, dimensioning, material conventions, and free hand practicing. Co-ordinate system and reference planes HP, VP, RPP & LPP of 2D/3D environment. Orthographic Projections: Planes of projection. 	2	Self study component: (Basics of geometrical constructions) 2+4 Numerical problems
2	Selection of drawing sheet size and scale. Commands and creation of Lines, coordinate points, axes, poly-lines, square, rectangle, polygons, splines, circles, ellipse, text, move, copy, off-set, mirror, rotate, trim, extend, break, chamfer, fillet, curves, constraints viz., tangency, parallelism, inclination and perpendicularity. Basics of geometrical constructions and Projections of points in al the four quadrants.	2	Numerical problems on projection of points
	Module-2	_	
Sl. No	Details	Duration in hours	Remarks
3	Basics of Projections of straight lines – problems on lines above HP and in front of VP	2	2+2 Numerical problems
4	Basics of Projections of straight lines – problems on lines above HP and in front of VP	2	4 Numerical problems

5	Projections of straight lines – problems on lines on HP/VP	2	3+5Numerical problems
6	Projections of straight lines – problems on lines on HP/VP	2	8 Numerical problems
	Module-3		
Sl. No	Details	Duratio nin hours	Remarks
7	Introduction to projection of plane surfaces, Projection of Triangular and Square planes inclined to horizontal and vertical planes.	2	Basics and 2 + 2 numerical problems
8	Projection of Triangular and Square planes inclined to horizontal and vertical planes.	2	4 Numerical problems
9	Rectangular, Pentagonal, Hexagonal and Circular planes	2	4+6 Numerical problems
10	Rectangular, Pentagonal, Hexagonal and Circular planes	2	10 Numerical problems
	Module-4		
Sl. No	Details	Duratio nin hours	Remarks
11	Introduction to projections of Solids, Projections of right regular Prisms	2	3 + 3Numerical problems
12	Introduction to projections of Solids, Projections of right regular Prisms	2	6 Numerical problems
13	Projection of Pyramids and Cones	2	3+5Numerical problems

14	Projection of Pyramids and Cones	2	8 Numerical problems
15	Tetrahedron and Hexahedron inclined to both the planes.	2	2+2 Numerical problems
16	Tetrahedron and Hexahedron inclined to both the planes.	2	4 Numerical problems
	Module-5		
Sl.		Duratio	Demodes
	Details		Remarks
SI. No		nin hours	Kemarks
No		nin	3 + 3 Numerical problems
No	Isometric Projection Introduction, Isometric scale, Isometric projection of simple plane figures, Isometric projection of hexahedron (cube), right regular	nin hours	3 + 3 Numerical
No 17	Isometric Projection Introduction, Isometric scale, Isometric projection of simple plane figures, Isometric projection of hexahedron (cube), right regular prisms, pyramids, cylinders, cones, Hemisphere and spheres. Isometric projection of hexahedron (cube), right regular prisms, pyramids, cylinders, cones, Hemisphere and spheres.	nin hours 2	3 + 3 Numerical problems

Suggested Learning Resources:

Text Books:

- 1. K.R. Gopalakrishna, Engineering Graphics, 32nd ed. Bangalore: Subhas Publications, 2013.
- 2. N.D. Bhatt, Engineering Drawing, 48th ed. Gujarat: V. M. Panchal Charutha Publishing House, 2005.

Reference Books:

- 1. A Primer on Computer Aided Engineering Drawing, 2nd edition, Published by VTU, Belagavi.
- 2. Luzadder Warren J., Duff John M Eastern, 2009, Fundamentals of Engineering Drawing with an Introduction to Interactive Computer Graphics for Design and Production, 7th edition, Best Publications.

Department of Mechanical Engineering

Elements of Mechanical Engineering -21ME15 Blow-up Syllabus (Common to all Branch)

	(Common to a	all Branch)	
Sl.	Details	Duration	Remarks
No	N 11 1		
	Module-1	4	5.00
1.	Sources of Energy: Non-renewable energy sources and their applications. Environmental issue like global warming and ozone depletion.	1	Differences and Common environmental effects.
2	Renewable Energy like Solar, Wind, Hydro, and Bio fuels	2	Line diagram which represents working and major components used in respective plant.
3	Steam: Formation of steam at constant pressure and thermodynamic properties of steam	2	Line diagram that represents Steam generation starting from 0°C.
4	Problems on steam	2	Simple numerical to find the quality of steam and its energy content.
	Module-2		
5	Hydraulic Turbines: Hydraulic Turbines, Classification and specification, Principle and operation of Pelton wheel turbine and their applications.	1	Line diagram which represents working and major components used in Pelton wheel turbine.
6	Principle and operation of Francis Turbine and Kaplan Turbine with their applications.	2	Line diagram which represents working and major components used in Francis Turbine and Kaplan Turbine
7	Internal Combustion Engines: Introduction, Classification, Parts of an IC engine, 4 stroke petrol engine, 4 stroke diesel engine	1	Line diagram which represents major parts of IC engine and their arrangement.
8	PV diagrams of Otto cycle, Diesel cycle, Dual Cycle, Simple numerical on performance parameters of IC Engines	2	Working of 4-Stroke Petrol and diesel engines and basic differences between them
9	Problems	2	Simple numerical to evaluate performance parameters of IC Engines
10	Electric Vehicles	1	Basic configuration of EVs and merits and demerits over standard IC engines.

	Module-3		
11	Refrigeration: Definitions- Refrigeration effect, Ton of Refrigeration, Ice making capacity, COP, Relative COP, Unit of Refrigeration, Refrigerant, Commonly used Refrigerants.	1	Definitions, formulas and their units of all basic terms used in Refrigeration system
12	Properties of Refrigerants, Principle and working of Vapour compression refrigeration. Principle and application of air conditioners, Window and Split air conditioners.	2	Line diagram which represents major components used in VCR system and Split AC and there working.
13	Belt Drives: Open and Cross belt drives, Definitions – Slip, Creep, Velocity ratio, Derivation of length for open belt drives	1	Definitions, formulas and their units of all basic terms used in belt drives. Derivation to find length of belt.
14	Derivation of length for cross belt drives	2	Derivation to find length of belt.
15	Problems on Belt drives	2	Simple numerical problems To find length of belt, distance between pulley, Diameter and speed of pulleys.
16	Gear Drives: Types – Spur, Helical, Bevel, Worm, rack and Pinion, Advantages and disadvantages over belt drives	2	Line diagram that represents Size of gears, directions of teeth, arrangements of gears, number of gears in drive system.
	Modu	e-4	
17	Engineering Materials: Introduction, Classification, Properties, and Industrial Application of Ferrous, Materials	2	List of aterials used for engineering application. Classification, and their basic properties.
18	Composites Materials, Smart Materials	1	Classification, advantages over conventional materials and their applications.
19	Metal Joining processes: Classifications, Principle of Soldering, Brazing and Welding processes, Working of Arc welding,	1	Classifications of different joining process, Line diagram that represents working and components used in Arc welding.
20	Working of Oxy – Acetylene welding, TIG and MIG Welding.	1	Line diagram that represents working and components used in Arc welding. Hands on.
21	Lathe Machine Tool: Principle of working of a centre Lathe, Specifications, Operations: Turning, Facing, Taper Turning by swiveling compound rest,	2	Sketches (Line diagram) only for explaining the Lathe operations. No sketch to represent Lathe machine tool. Hands on.

22	Lathe Operations: Knurling, Thread cutting, Drilling.	2	Sketches (Line diagram) only for explaining the Lathe operations. Hands on.
	Module-5		
23	 Automation: Introduction and types of automation. Introduction to Advanced Manufacturing Systems: Computer Numerical Control (CNC) Machines: Introduction, Components of CNC Machines, 	2	Classification of Advanced manufacturing system, Line diagram to represent the working and major components used in CNC.
24	Robotics: Robot anatomy, Joints and links, Common Robot configurations,	2	Line diagrams that represents different robotic configurations.
25	Applications of Robots in Material handling, Processing, Assembly and inspection	1	Various applications of robots in different field.

Suggested Learning Resources:

Textbooks:

1. K. R. Gopalakrishna, "Elements of Mechanical Engineering", Subhas Publications, 38th Edition, 2019.

2. S. Trymbaka Murthy, "Text book of Elements of Mechanical Engineering", MEDTECH, Scientific

International Pvt Ltd, 1st Edition, 2019.

3. Mehrdad Ehsani, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles", CRC Press, 1st Edition, 2005.

References:

1. Groover, Milell P, "Automation, Production Systems & Computer-integrated Manufacturing", Pearson, 4th Edition, 2018.

2. K. P Roy, "Elements of Mechanical Engineering", Media Promoters & amp; Publishing Pvt. Ltd, 7th Edition, 2014.

3. Dr. A. S. Ravindra, "Elements of Mechanical Engineering", Best Publications, 7th Edition, 2009.

Module	Text Book / Reference Book				
1	1. K. R. Gopalakrishna, "Elements of Mechanical Engineering", Subhas Publications, 38th				
	Edition, 2019.				
	2. S. Trymbaka Murthy, "Text book of Elements of Mechanical Engineering", MEDTECH,				
	Scientific International Pvt Ltd, 1st Edition, 2019.				
	3. K. P Roy, "Elements of Mechanical Engineering", Media Promoters & amp; Publishing Pvt.				
	Ltd, 7th Edition, 2014.				
	4. Dr. A. S. Ravindra, "Elements of Mechanical Engineering", Best Publications, 7th Edition,				
	2009.				
2	1. K. R. Gopalakrishna, "Elements of Mechanical Engineering", Subhas Publications, 38th				
	Edition, 2019.				
	2. S. Trymbaka Murthy, "Text book of Elements of Mechanical Engineering", MEDTECH,				
	Scientific International Pvt Ltd, 1st Edition, 2019.				
	3. K. P Roy, "Elements of Mechanical Engineering", Media Promoters & amp; Publishing Pvt.				
	Ltd, 7th Edition, 2014.				
	4. Dr. A. S. Ravindra, "Elements of Mechanical Engineering", Best Publications, 7th Edition,				
	2009.				
	5. Mehrdad Ehsani, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles", CRC Press, 1st				
	Edition, 2005.				
3	1. K. R. Gopalakrishna, "Elements of Mechanical Engineering", Subhas Publications, 38th				
	Edition, 2019.				
	2. S. Trymbaka Murthy, "Text book of Elements of Mechanical Engineering", MEDTECH,				
L					

Module wise Text Books/Reference Books

	Scientific International Pvt Ltd, 1st Edition, 2019.
	3. K. P Roy, "Elements of Mechanical Engineering", Media Promoters & amp; Publishing Pvt.
	Ltd, 7th Edition, 2014.
	4. Dr. A. S. Ravindra, "Elements of Mechanical Engineering", Best Publications, 7th Edition,
	2009.
4	1. K. R. Gopalakrishna, "Elements of Mechanical Engineering", Subhas Publications, 38th
	Edition, 2019.
	2. S. Trymbaka Murthy, "Text book of Elements of Mechanical Engineering", MEDTECH,
	Scientific International Pvt Ltd, 1st Edition, 2019.
	3. K. P Roy, "Elements of Mechanical Engineering", Media Promoters & amp; Publishing Pvt.
	Ltd, 7th Edition, 2014.
	4. Dr. A. S. Ravindra, "Elements of Mechanical Engineering", Best Publications, 7th Edition, 2009.
5	1. K. R. Gopalakrishna, "Elements of Mechanical Engineering", Subhas Publications, 38th
5	
	Edition, 2019.
	2. S. Trymbaka Murthy, "Text book of Elements of Mechanical Engineering", MEDTECH,
	Scientific International Pvt Ltd, 1st Edition, 2019.
	3. Groover, Milell P, "Automation, Production Systems & Computer-integrated Manufacturing",
	Pearson, 4th Edition, 2018.